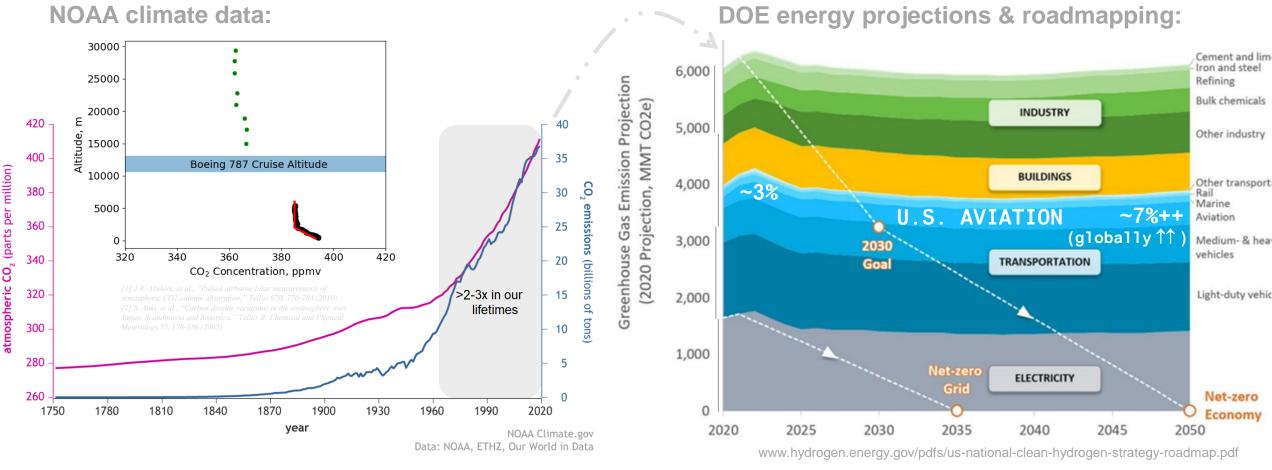


Carbon-Free Fuels in Gas Turbines, for Propulsion & Power

FT4000® Aeroderivative Dual Fuel Gas Turbine Engine.



Carbon-Free Fuel Combustion Workshop
Boston, MA, 16 March 2025
14th US National Combustion Meeting (USNCM)

Context: Gas Turbines' Contribution to CO₂ Emissions

- Aviation contributes ~3%+++ of anthropogenic CO₂ emissions in US & Globally
- Aviation is challenging to de-carbonize → long service life & "energy dense" power needed
- Power generation Gas Turbines contribute + ~10% CO₂ emissions in US

Gas Turbine

Research Center

> Shipping CO₂ emissions similar level as Aviation globally: fewer GTs but more fuel-flexible

Hydrogen-based Engines (incl. NH₃) ... re-visit for new (& old) reasons

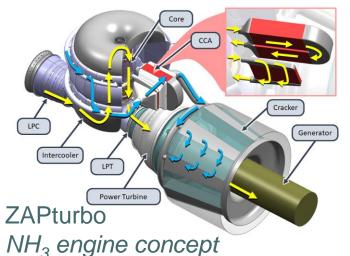
Early Cold-War Era:

high-altitude, high-speed flight

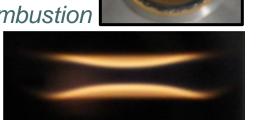
NASA X-15

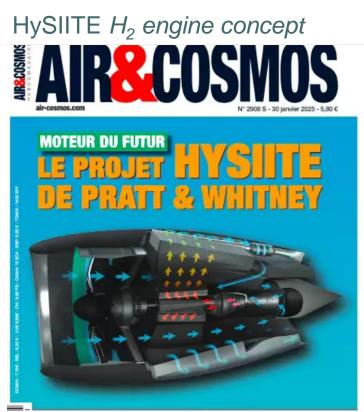
➤ NH₃ fueled

rocket engine

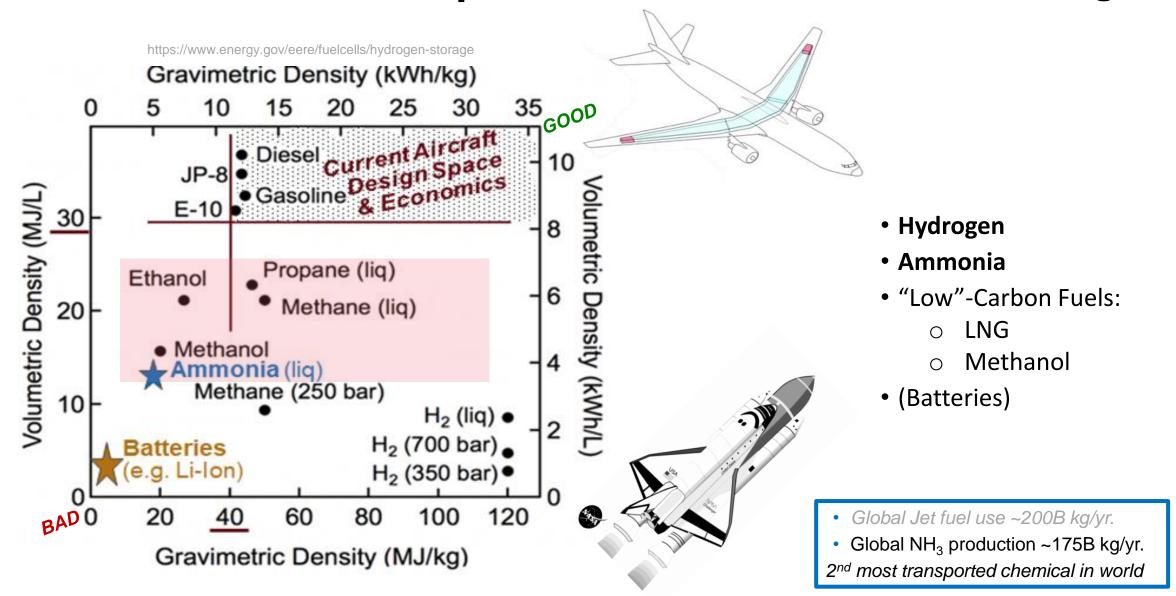


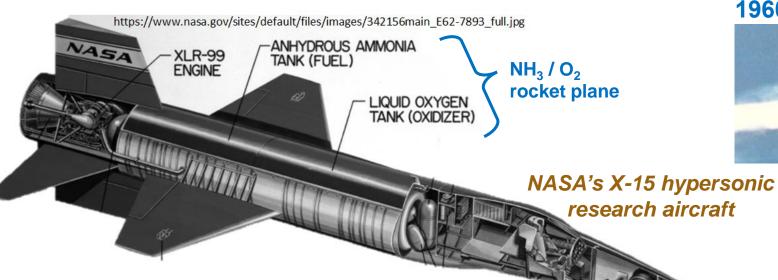
Project Suntan
 ➤ H₂ turbine engine,
 predecessor to RL10


rocket engine


Climate-Change Era:

low carbon, low climate-impact flight



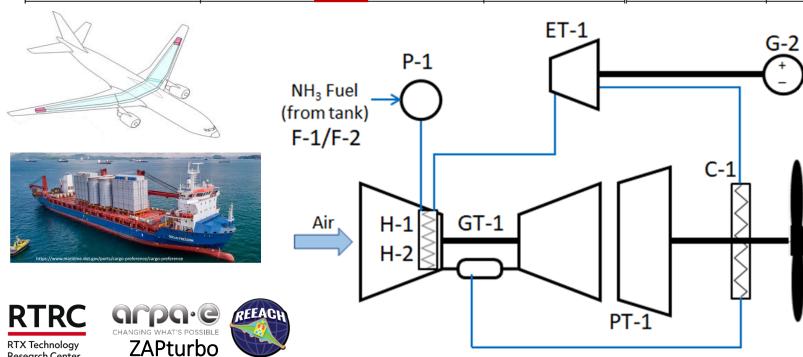

"Net-Zero Carbon" Fuel Options in Aviation: Volume & Weight

Ammonia's energy similar to Methanol; Storage properties similar to Propane → "familiar" fuel

NH₃ as a useful propulsion fuel: How (or Why)

1960 ... 1st flight of NH₃-powered aircraft

XLR-99 rocket engine: propellant = NH_3 / LOx

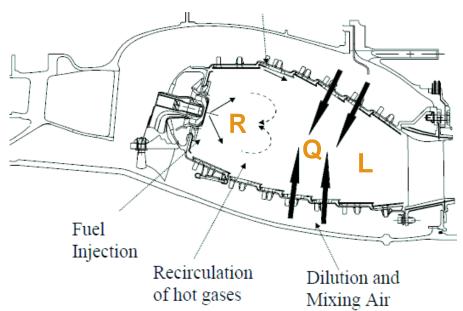

<u>WHY</u>?

- NH₃ chemically stable
- NH₃ easily liquefied (-33C)
- NH₃ has excellent properties for nozzle cooling -- better cooling & thrust than ethanol/water, & pre-dates RP-1 & LH₂ developments
- NH₃ does not coke \rightarrow **Able to absorb significant heat**

And has zero carbon!

Beyond Storage: Fuel Properties for Cooling & Working Fluid

Performance Metrics, for <u>Low-Carbon Fuel Options</u>		Units w/LHV fuel energy (Lower Heat. Val.)	LH2 Liquid Hydrogen	NH3 Anhydrous Ammonia	Liquid CH4 / "eLNG" e.g. SpaceX, Blue Origin	SAF or Jet-A (state of art)
Thermal & Thermodynamic Properties	Thermal Conductivity, k	W/m-K (liquid)	0.1	0.6	0.2	0.1
	Heat Capacity, Cp	kJ / kg-K (liquid)	9.7	4.5	3.5	2.0
	"Gamma" ratio, Cp/Cv	in gas state	1.4	1.3	1.3	< 1.05 (C8+)
	Heat of Vaporization, h_fg	kJ / kg	446	1370	510	350
	Heat of Cracking reaction	kJ / kg	N/A	2700	N/A	coking issues


Research Center

- Thermal energy captured in fuel goes to <u>top</u> of Brayton cycle when burned
 - high-efficiency heat re-capture! (recuperation effect)
- NH₃ <u>liquid</u> esp. useful as working fluid, for i-cooling & in bottom. cycle
 - > cycle opportunity for GTs using large cold-liquid storage:
 - aeroderivative power incl. ships
 - also note LNG opp.

Challenge: How to Burn NH₃ with low NOx emissions?

Re-think approach to RQL combustion...

"Conventional" RQL, e.g. hydrocarbon fuels (NG, Jet...):

- Rich-zone considerations:
 - PM (soot) vs. turndown → FAR range
 - Ignition/stability \rightarrow geom./size ($\tau_{AnchorZone}$)
- Lean-zone considerations:
 - CO burnout vs. NOx $\rightarrow \tau_{\text{Lean}} \uparrow \text{or} \downarrow$, rapid mixing
 - PF (temp. uniform.) → complete mixing

-CRN-phi=1.3_P 70 NH_3 -Air Combustion at p = 35 atm, T = 850 K -CFD-phi=1.3 300 150 (mdd) **Equilibrium** 250 125 NH₃ @ 40 ms 2 200 150 Equilibrium 100 50 — CRN-phi1.25_PSR1_1.6ms CFD - swirler phi=1.25 ---- CFD - swirler phi=1.30 1.0 Equivalence Ratio ϕ New/Different considerations for NH₃: ■ Drive N-species to $N_2 \rightarrow \tau_{Rich} \uparrow \uparrow$ ■ FAR_{RICH} determined by chem. equilib. ■ $NOx_{THERMAL}$ = rapid mixing *w/less Q*_{AIR}

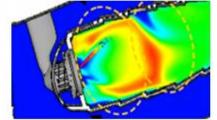
Rich-Quench-Lean (RQL) reconfigured for low-NOx NH₃ combustion:

DOE / NETL-sponsored project on NH₃ combustion studies

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

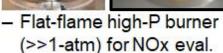
RTRC UConn

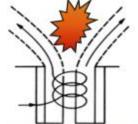
year-4


year-3

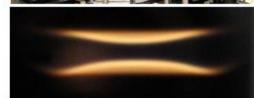
year-2

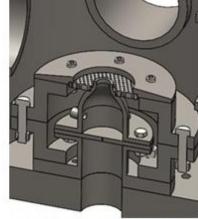
year-1


Time



- Single-nozzle high-pressure combustor, fired w/NH₃ fuel
- Measure emiss. & performance: NOx, efficiency, stability




- 1-atm swirl-stab. burner
- Piloting studies w/H₂

Modeling:

- CFD for design
- Kinetic improve.
 w/ exp. data
- CFD & validation
- Turb. models for NH3 comb. & NOx (no post-process.)
- CRN modeling
- Counterflow
- Kinetic mech.

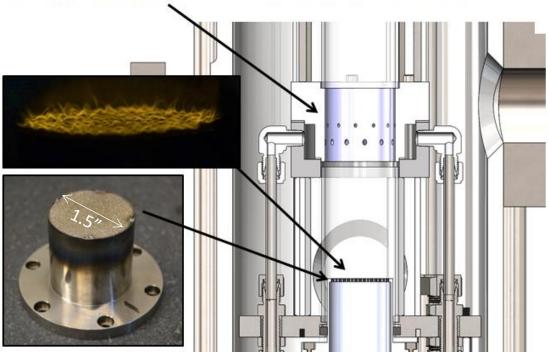
Turbulent S_L rig, for
 NH₃ @ P, T > ambient
 (~20% turb. intensity)

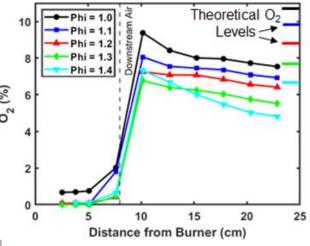
- Counterflow flame rig, compatible w/NH₃ fuel
- Measure strained flames w/ inlet P, T > ambient

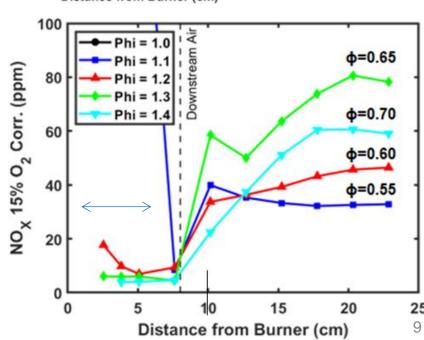
Is it real?

(can we really get low-NOx NH₃

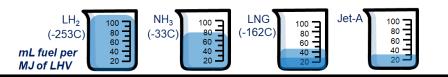
combustion)


RTRC Lab Evaluation: Pure NH₃ combustion @ elevated P, T


Preliminary data shows 35ppm NOx in 5-atm pressure RQL "burner"

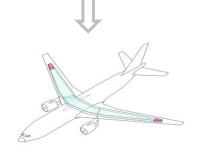


Flat-Flame Burner Rig – Downstream Air Addition


- Data collected at P = 5 atm, T_{in} = 450 K
- Downstream air injection flowrate matched with burner air to allow for rich-to-lean transition (50 / 50 airsplit)
- Air injection ring located 8-cm downstream of burner

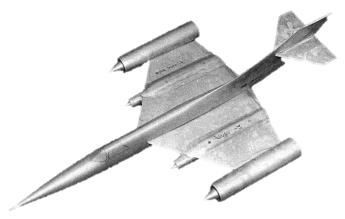
What about H2...: Storage Vol. & Temp.

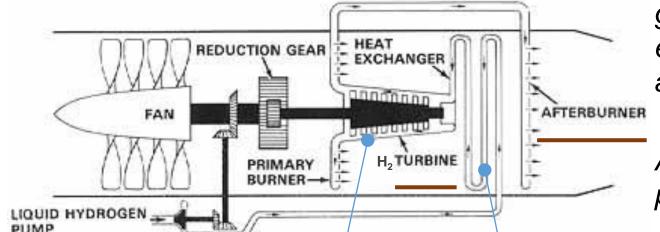
Performance Metrics, for <u>Low-Carbon Fuel Options</u>		Units w/LHV fuel energy (Lower Heat. Val.)	LH2 Liquid Hydrogen	NH3 Anhydrous Ammonia	Liquid CH4 / "eLNG" e.g. SpaceX, Blue Origin	SAF or Jet-A (state of art)
Thermal & Thermodynamic Properties	Thermal Conductivity, k	W / m-K (liquid)	0.1	0.6	0.2	0.1
	Heat Capacity, Cp	kJ / kg-K (liquid)	9.7	4.5	3.5	2.0
	"Gamma" ratio, Cp/Cv	in gas state	1.4	1.3	1.3	< 1.05 (C8+)
	Heat of Vaporization, h_fg	kJ / kg	446	1370	510	350
	Heat of Cracking reaction	kJ / kg	N/A	2700	N/A	coking issues
Fuel Storage Requirements	Specific Energy	MJ / kg	120	18.6	50	43
	Energy Density of liquefied fuel	MJ / L	8.5	12.7	21.1	34
	Tank conditions	°C (K) atm	−253 °C (20 K) 1 atm	−33 °C (240 K) 1 atm	–162 °C (111 K) 1 atm	ambient



RTRC

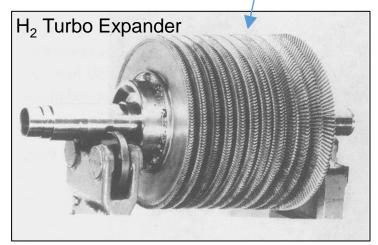
RTX Technology Research Center

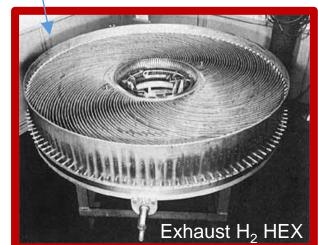




H₂ ENGINE EXPERIENCE / LESSONS: P&W 304 ENGINE → USE THE COLD

- 1950'S PROJECT SUNTAN . . . MACH-2.5 AFTERBURNING ENGINE
- LEARNING PAVES WAY FOR P&W DEVELOPMENT OF RL10 ROCKET ENGINE





Power is generated by expanding LH2 after HEX

Augmentor provides thrust

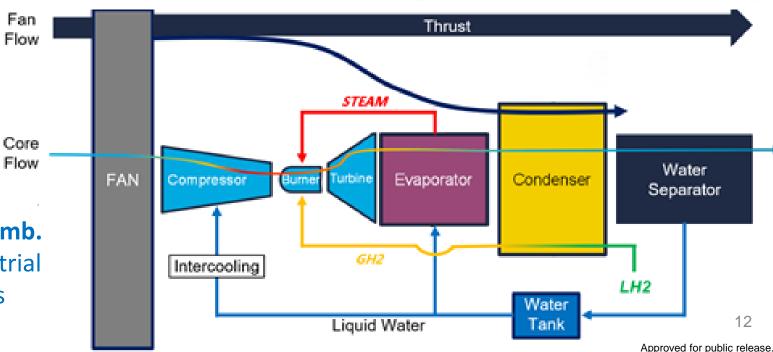
Hydrogen-Enabled performance → Water as Working Fluid

• For *aircraft* propulsion:

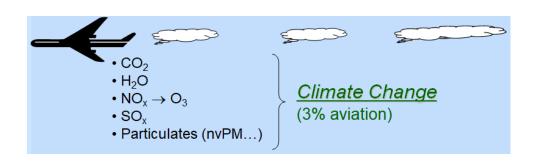
- condense water from high-moisture exhaust (H₂ combustion)
- > inject water/steam into cycle
 - high-efficiency "combined-cycle"
 - low-NOx, stable H₂ combustion

• For *power-generation*:

Research Center


- condense or use other water source
- > inject steam into combustor & turbine
 - low-NOx H₂ combustion (high dilution)
 - and cycle efficiency benefit
 (e.g. H₂-fired Cheng cycle)
- Applicable to aero-derivative engines & comb.
 incl. transportation (shipping), and to industrial
 or frame GTs

Hydrogen Steam Injected Intercooled Turbine Engine


Hydrogen combustion in steam-air mix —

Stable combustion to 0.8 steam-air ratio Measured 99.3% NO_x reduction

Emissions in Aviation – Water (vapor), nvPM, NOx & SOx

Performance Metrics, for <u>Low-Carbon Fuel Options</u>		Units w/LHV fuel energy (Lower Heat. Val.)	LH2 Liquid Hydrogen	NH3 Anhydrous Ammonia	Liquid CH4 / "eLNG" e.g. SpaceX, Blue Origin	SAF or Jet-A (state of art)
Environmental	CO ₂ emissions from engine	kg / GJ	ZERO	ZERO	55 (↓ 24% vs. Jet-A)	72
	H ₂ O emissions	kg / GJ	75	85	45	30
Impact	NOx	g / kg_fuel	target same as SAF	target same as SAF	< SAF	(1-)10-30
(emissions)	SOx	g/kg_fuel	ZERO	ZERO	ZERO	~ 1.0
	nvPM	g/kg_fuel	ZERO	ZERO	<< SAF	~ 0.1

Contrails: Studies underway

Carbon-Free fuels produce no nvPM

(nucleation sites)

But they emit more water – impact uncertain...

Gas Turbines in Prop. & Power → Carbon-Free Fuel Opportunities

3 Key Take-Aways:

- > Aviation difficult to de-carbonize, but new fuels offer efficiency improvements to help enable
- NH₃: Ammonia viable as a <u>high-efficiency</u> transportation fuel incl. in aviation
 - technology spinoffs to power-gen, esp. when NH₃ stored as refrig. liquid (for use as working fluid)
- > H₂: Hydrogen has challenges, but brings opportunity as <u>cryo</u>-fuel / cryo-fluid in aviation

BACKUP

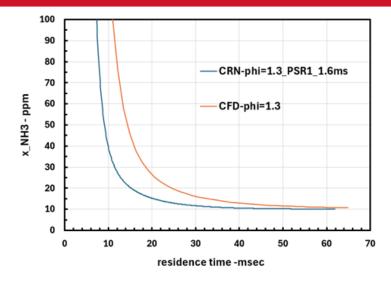


Figure 5.3 x_NH3 vs residence time, T3=850F, T_fuel=310.9K, Swirler φ=1.3

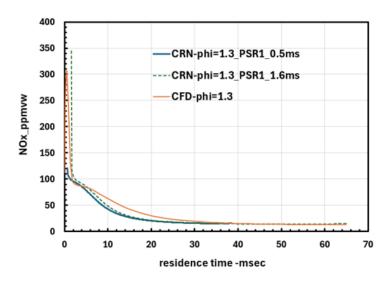


Figure 5.4 NOx vs residence time, T3=850F, T_fuel=310.9K, Swirler φ=1.3

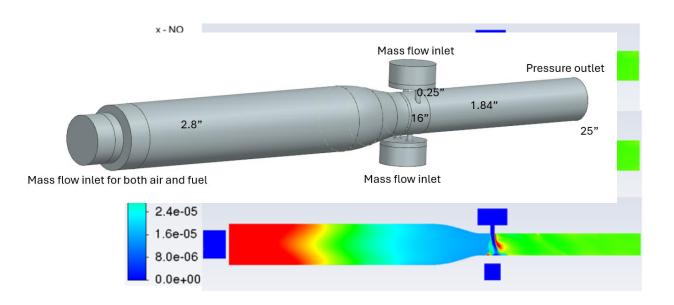


Figure 5.8 x_aNo, T3=850F, T_afuel=310.9K, Swirler φ=1.3

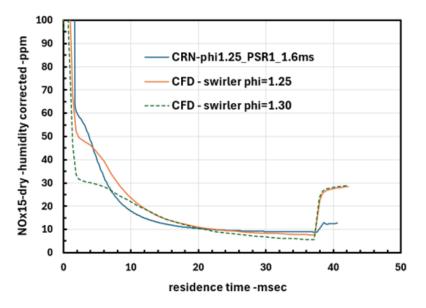
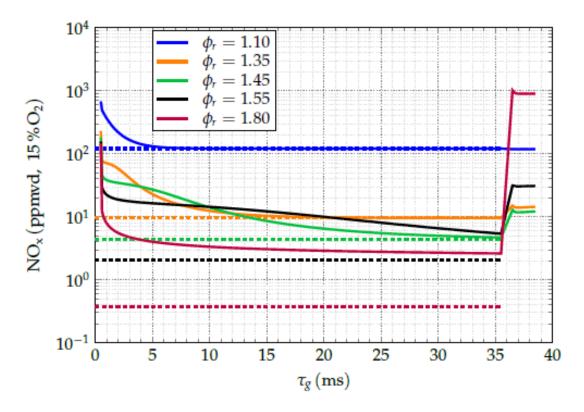
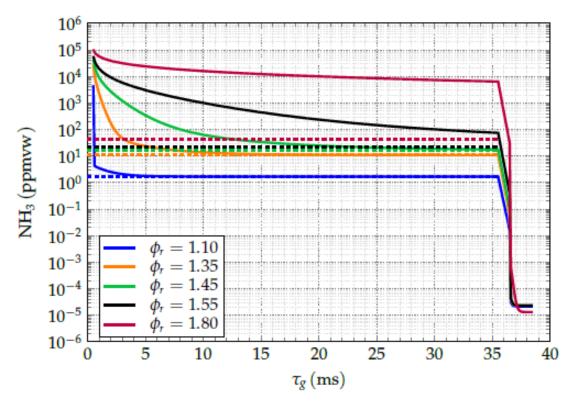
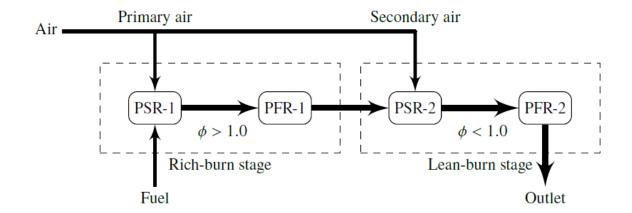




Figure 5.9 NOx15_dry_humidity corrected vs residence time, T3=850F, T_sfuel=310.9K, Swirler φ=1.3


Approved for public release.

(a) Evolution of NOx with global residence time

(b) Evolution of NH₃ with global residence time

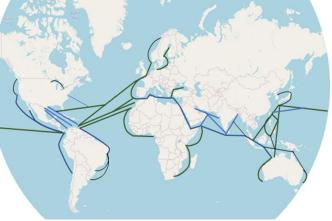
Re-visit NH₃ for <u>turbine</u> propulsion ...Physical properties...

Fuel Property	Jet-A (ambient liquid)	H ₂ (—253 °C liquid)	NH ₃ - anhydrous (–33 °C liquid)	
Specific Energy (MJ/kg)	43 MJ/kg	120 MJ/kg	18.6 MJ/kg	
Energy Density (MJ/L)	34 MJ/L	8.5 MJ/L	12.7 MJ/L	
T_saturation @ 1-atm (°C)	175 - 250 °C	−253 °C	− 33 °C	
T_saturation @ 10-atm (°C)	325 - 350 °C	−242 °C	+25 °C	
Conductivity, k (W/m-K)	0.1 W/m-K	0.1 W/m-K	0.6 W/m-K	
Heat Capacity, Cp (kJ/kg-K)	2.0 kJ/kg-K	9.7 kJ/kg-K	4.5 kJ/kg-K	
Heat of Vaporization,h_fg (kJ/kg)	350 kJ/kg	446 kJ/kg	1370 kJ/kg	
Heat of Cracking reaction (kJ/kg)	coking issues	N/A	2700 kJ/kg	
"Gamma" ratio, Cp/Cv (in gas state)	< 1.05 (C8+)	1.4	1.3	

Ammonia properties are "familiar" & useful

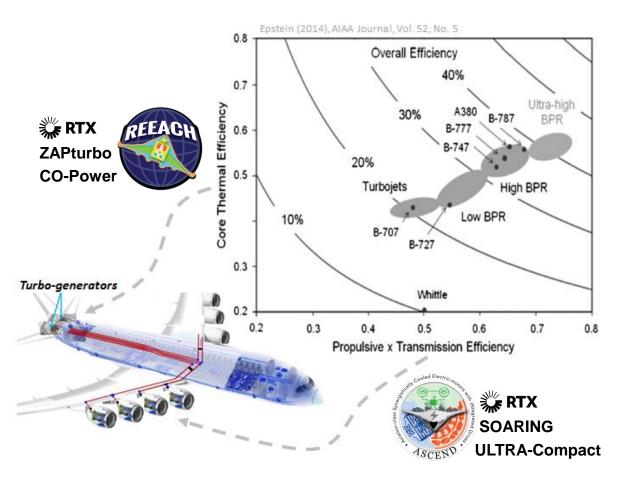
Energy density ~ Methanol (~1/2 of Jet fuel)

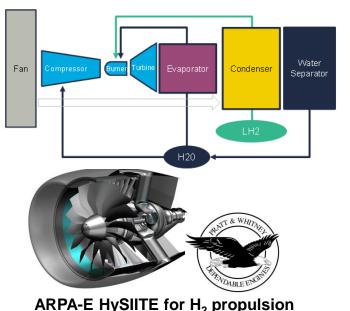
Storage conditions ~ Propane


Ammonia is a well-known refrigerant, with excellent k, Cp, h_fg

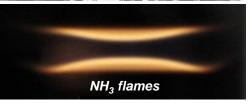
<u>Unique</u> capabilities as a fuel, with potential for <u>efficiency gains</u>

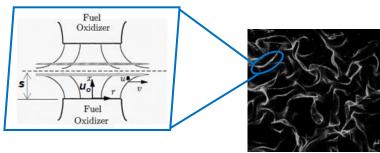
- Global Jet fuel use ~200B kg/yr.
- Global NH₃ production ~175B kg/yr.
- Global NH₃ infrastructure @ scale
 2nd most transported chemical in world



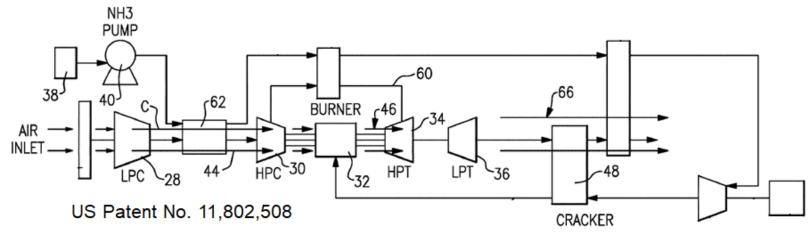

Sustainable Aviation Technology Development ...

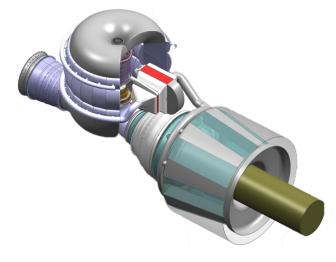
Propulsive Efficiency ↑ w/ Electrification




• Further reduce fuel weight & volume

Alternative Fuels for Reduced Carbon




DOE-NETL "LOAD-Z" project to develop & test
 NH₃ combustion technology for gas turbines

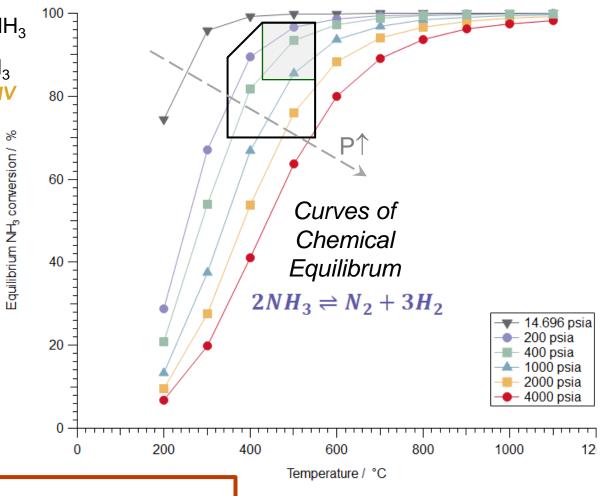
NH₃ Propulsion: Learned from System Studies ("where we landed")

- "Chemical recuperation" maximized by cracking downstream of NH₃ turboexpander
 - T_{HEAT SOURCE} from efficient GT-cycles insufficient for high %-cracking @ high-P_{NH3} ... (+ catalyst sintering @ high-T)
 - Maximize CC-efficiency with Q_{CRACKING}↑ (%-cracking ↑) despite W_{TURBOEXPANDER}↓
- NH₃ effective for chilling cooling-air to turbine
 - Significant cooling obtained w/ compact low-∆P HEX
 - Enables high-TRIT (T4) for efficiency & high T_{EXHAUST} to drive cracking (90% NH₃ → H₂)
- NH₃ intercooling enables high-OPR cycle
- Provides intercooling without heat rejection (without energy loss) for efficiency 1
 - NH₃! NH₃ has ample cooling capacity at engine fuel-flow rates
 - NH₃ is effective liquid "refrigerant" for compact intercooling HEX

20

Challenge: High-Pressure NH₃ Cracking (fight equilibrium)

Cracking:
$$NH_3 \rightarrow \frac{3}{2}H_2 + \frac{1}{2}N_2 \dots \Delta H_{\underline{ENDO}}$$
-thermic = + 2.7 MJ/kg-NH₃

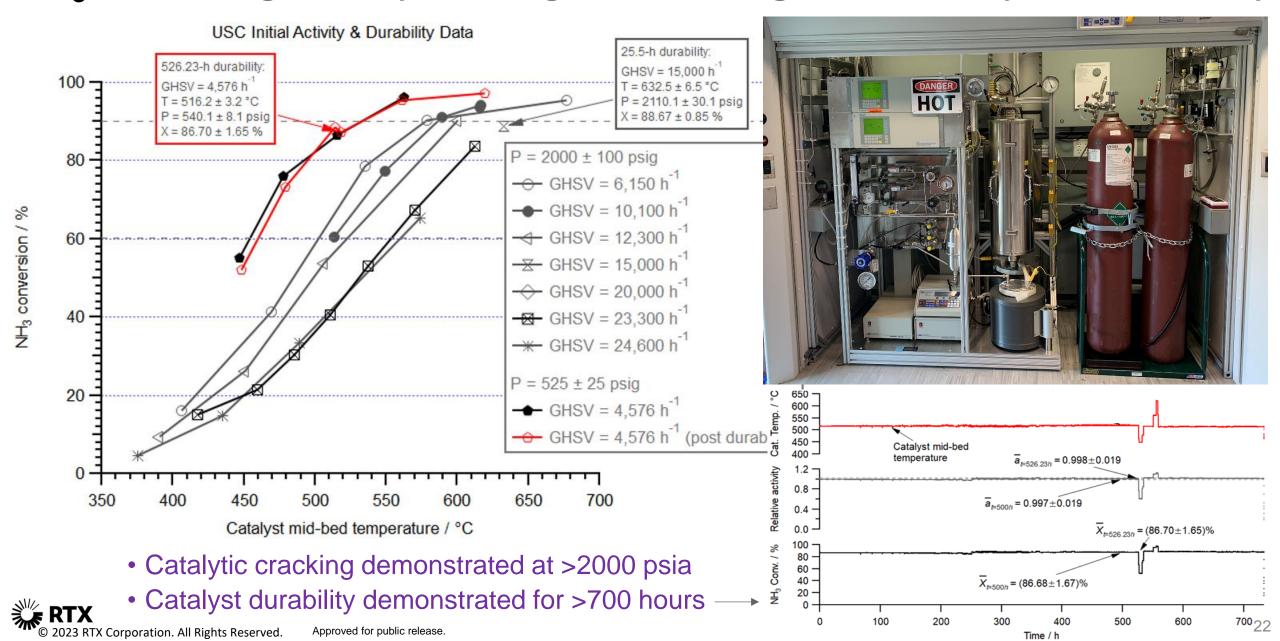

Synthesis: $N_2 + 3H_2 \rightarrow 2NH_3 \dots \Delta H_{\underline{EXO}}$ -thermic = -2.7 MJ/kg-NH₃

15% of LHV

Constraints: (design intent)

1. Avoid gas compression work (loss)

- pump liquid NH₃ before crack to H₂
- 2. GT = internal combustion engine
 - P_{FUEL} > **P**_{COMBUSTOR}
- 3. Desire high % $_{CRACKING}$ NH₃ \rightarrow H₂
- 4. Use only waste-heat for cracking
 - T_{CRACKING} < **T**_{EXHAUST}



2 Objectives:

- Seek optimal tradeoff: Cracking -vs.- Expansion Work
- Demonstrate catalyst activity & durability at high-P

21

NH₃ Cracking Catalyst: High-P Testing for Activity & Durability

END

