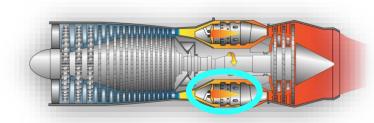
MARCH 16TH, 2025

ENABLING FUEL-FLEXIBLE
PROPULSION AND POWER
GENERATION DEVICES BY LEVERAGING
LEADERSHIP COMPUTING AND HIGHFIDELITY EXPERIMENTS

SIBENDU SOM

Director - Advanced Propulsion and Power Department

Carbon-Free Fuel Workshop @ NCM 2025



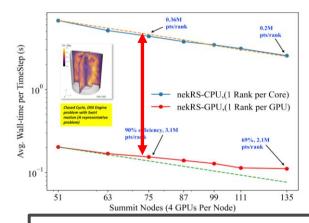
OVERVIEW

- ☐ Big Science Tools/Core Capabilities
 - Leadership computing (Exascale)
 - Advanced Photon Source x-ray diagnostic
 - Technology transfer to industry
- ☐ Recip. Engines
 - DNS, LES, RANS, & ROMs for optimization
 - Challenges and opportunities with H2-ICE
- ☐ Gas turbines
 - SAF end-use research
 - Film cooling
- Other applications: RDE, Stationary Power generation, High-speed flows, Burners, ...
- Concluding remarks

LEADERSHIP (EXASCALE) COMPUTING

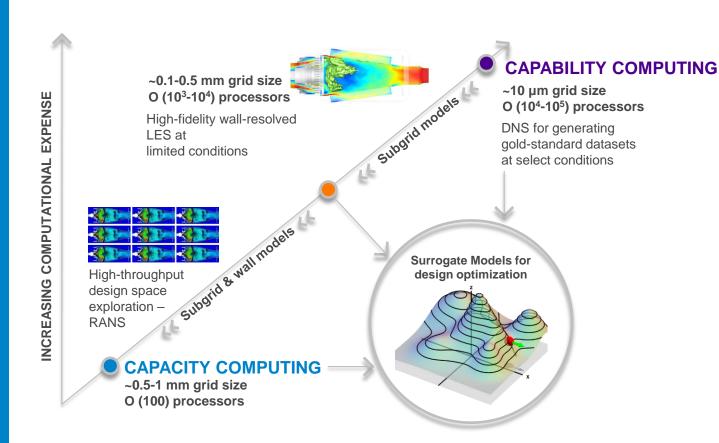
Nek5000/nekRS: Exascale ready code

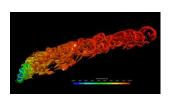
Theta/Theta-GPU



Polaris (GPU only)

- High-order in space (spectral element method, 5th 15th order) and in time (up to 3rd order)
- nekRS the GPU variant of Nek5000
 - GPU-ready exascale codes under active development leveraging ~\$15M ASCR investment
 - Scales on ~30,000 GPUs
- Nek5000/NekRS codes used to perform high-fidelity devicelevel simulations to benchmark/train models


Aurora: Exascale Machine



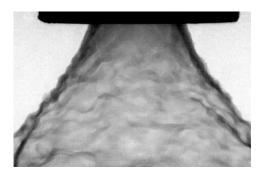
GPUs provide 10-15x speed-up over CPU

Ameen et al., DOE Advanced Engine Combustion Review Meeting, Aug 2021

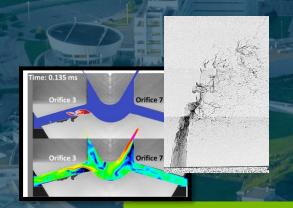
CAPACITY AND CAPABILITY COMPUTING

LEVERAGE A MULTI-FIDELITY SIMULATION FRAMEWORK

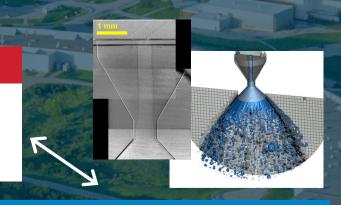
- Improve understanding of flow and combustion processes
- Develop physicsbased and data-driven subgrid models
- Perform simulationbased design optimization
- Develop surrogate models for fast design optimization


X-RAYS: UNIQUE DIAGNOSTICS FOR MULTI-PHASE FLOWS

- Visible light is scattered by micron-scale droplets
 - Multiple scattering in regions of high droplet number density
 - Multi-phase flows are often opaque
- Small wavelength X-rays can penetrate multi-phase flows
 - Interaction is absorption of the x-rays by the fuel
 - Quantified to measure the fuel density distribution, in dense regions of sprays
- Synchrotron x-rays give **10**⁶ more flux than a benchtop source
- **■** Excellent time, spatial resolution


Radke (NASA), Meyer (Purdue)

Radke (NASA), Meyer (Purdue)



PROPULSION AND POWER DEPARTMENT UNIQUE DIAGNOSTICS AND HIGH-FIDELITY SIMULATIONS

DATA

- Advanced Photon Source X-ray Diagnostics
- RCM for fuels

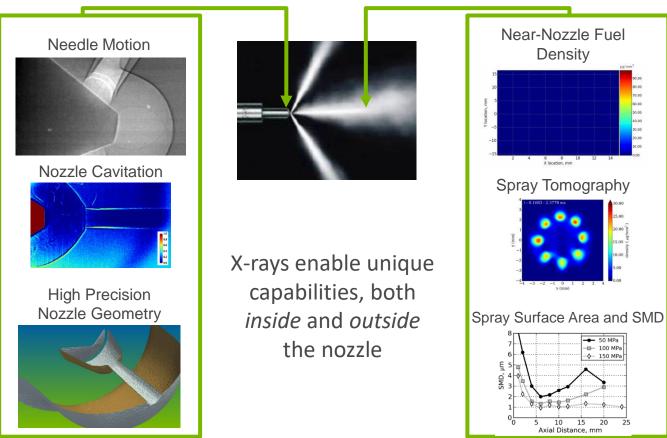
KNOWLEDGE

- Internal Nozzle flow
- Atomization/ Fuel-air mixing
- Ignition
- Rare events: knock, misfire, flashback, lean blow-out
- Combustion stability
- SAFs, Advanced fuels (H₂, NH₃)

Super-computing resources

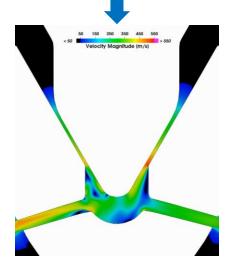
ML workflows

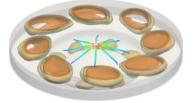
- Research: NEK5000, nekRS
- Design: CONVERGE, OpenFOAM, CharLES, ...


PISTON ENGINES: ON-ROAD, OFF-ROAD, RAIL, MARINE

- X-RAY CHARACTERIZATION OF FUELS
- H2-ICE CHALLENGES AND OPPORTUNITIES
 - DNS of Internal combustion engine

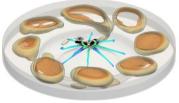
X-RAY DIAGNOSTICS FOR LIQUID FUEL INJECTION


X-RAYS TO SIMULATIONS

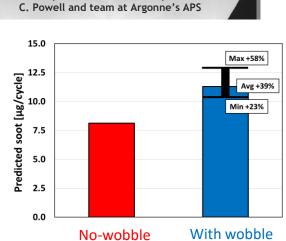


Orifice 7

Orifice 7



No-wobble

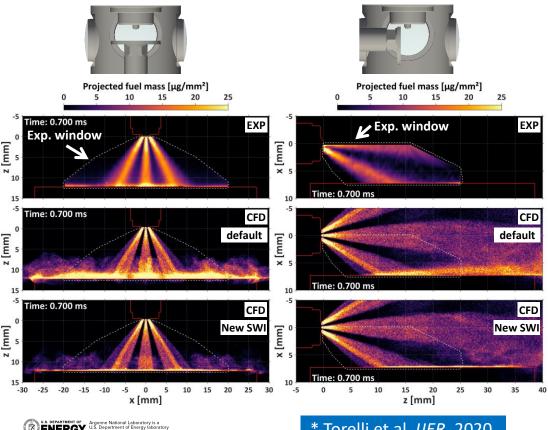


Time: 0.135 ms

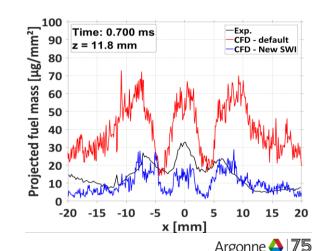
Orifice 3

Orifice 3

With wobble

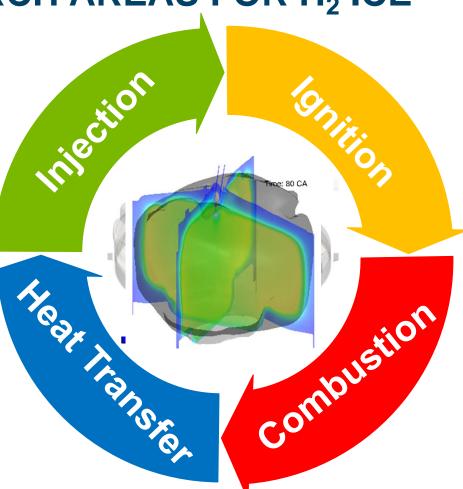


Experiments are courtesy of


SPRAY-WALL INTERACTION (SWI)

Leveraging Unique X-ray Diagnostics

- Engine Combustion Network case (T=298 K, p=100 kPa)
- Higher fuel mass accumulation observed using default O'Rourke & Amsden model
- New SWI* model developed based on x-ray observations and DNS data from Prof. M. Raessi (U Mass.), incorporated in CONVERGE CFD code

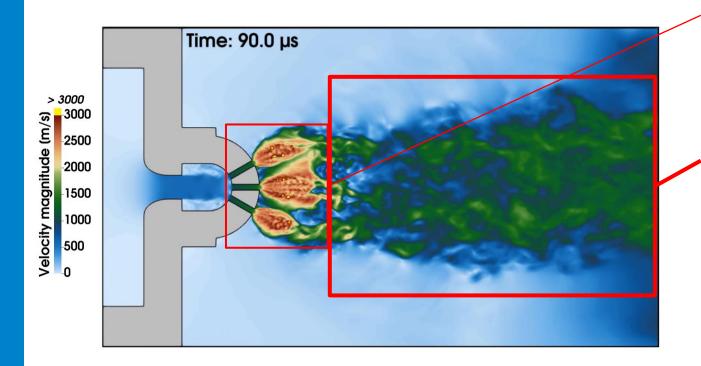

KEY RESEARCH AREAS FOR H₂ ICE

Fuel Injection

- Gas-jet structure (mesh refinement, turbulence modeling, discretization order, timestep).
- Mixing with surrounding gas (mesh refinement, turbulence modeling, discretization order, mixing model).

Heat Transfer

- Wall temperature (CHT modeling).
- Wall heat fluxes (mesh refinement, turbulence modeling).
- Flame-wall interaction (quenching model).


Ignition

- Conventional SI (discharge, flame kernel growth).
- Advanced ignition (discharge, flame kernel growth, TCI).
- Diesel pilot (spray models, kinetics).

Combustion

- Flame speed (turbulent combustion modeling, kinetics, transport properties).
- <u>Pre-ignition</u> (CHT calculations, kinetics).
- Knock (CHT, knock modeling, kinetics).
- Emissions (kinetics).

HYDROGEN - DIRECT & PORT INJECTION

Focus Area 1

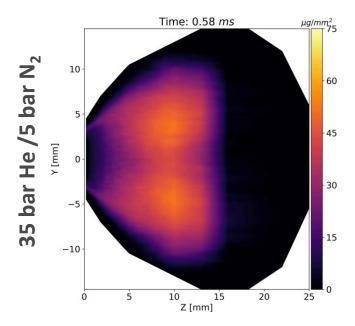
 Under-expanded (supersonic) gaseous jet region impacts jet evolution (eventually collapse) and determines the start of the mixing domain.

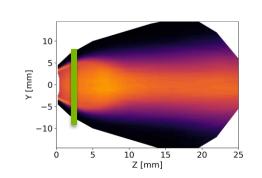
Focus Area 2

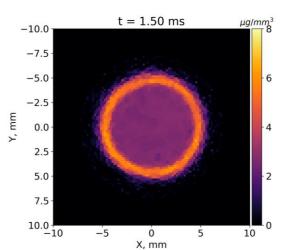
Mixing between the injected gas and the ambient gas occurs throughout the gas-jet domain, starting from the jet boundaries into the jet core.

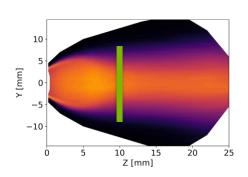
Additional Focus (Area 3) on the gas-jet impingement and interaction with cylinder walls.

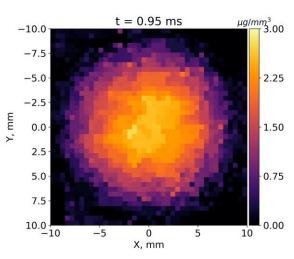
Port Fuel Injection (PFI) has similar challenges for Focus Areas 2 and 3



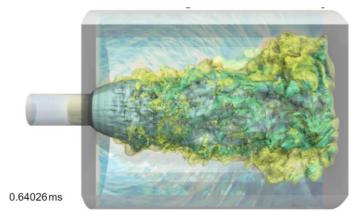


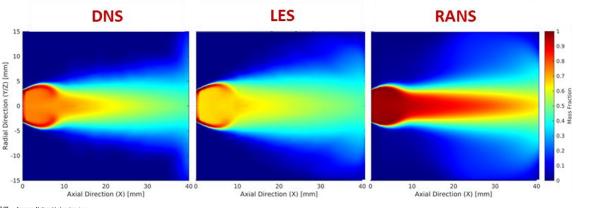


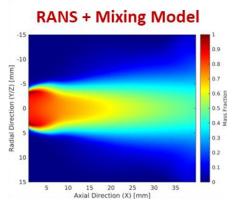

3D MEASUREMENTS OF GAS JETS WITH X-RAYS



- He (and H₂) is transparent to x-rays and is a better surrogate than Argon
- X-ray CT allows measurement of the 3D density distribution for unique quantitative data of this collapse

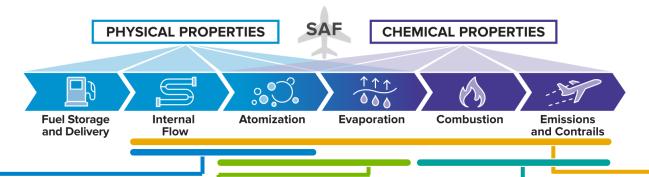

NATIONAL LABORATORY | 1946-2021

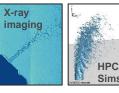

MIXING MODEL DEVELOPMENT


 Mixing of H₂ under direct injection conditions remains a challenge

 DNS performed using compressible Nek for different Re conditions

	Hrs	Cores	Core-hrs
LES	59	540	31,860
RANS	19	180	3,420
RANS + mixing model	29	180	5,220

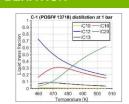




SYNTHETIC AVIATION FUEL: GAPS & OPPORTUNITIES

MULTIPHASE FLOWS

proprietary atomizer



- Sprays primary influence downstream processes
- Resources (APS, ALCF) and expertise to impact OEM tools
- Lab/DOE investments in substantial facility upgrades
- Approach guided by OEMs to achieve impactful results

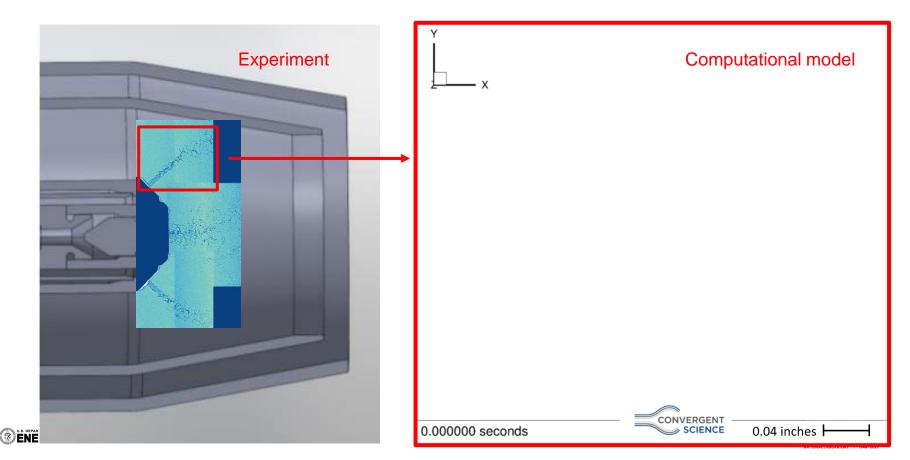
REAL FLUID BEHAVIOR

SAF multicomponent vaporization

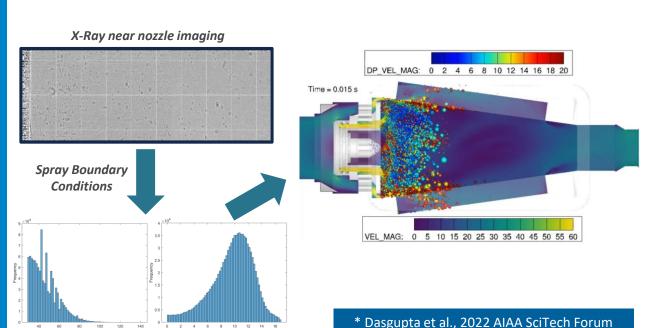
- SAF chemistries influence physical processes
- Develop physics-based engineering models for multi-component vaporization
- Transferrable to industry practice

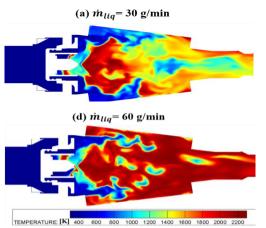
CHEMISTRY DYNAMICS

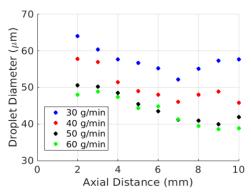
- Combustion, emission, contrail prediction hinge on SAF characterization
- Validating SAF models
- Facility upgrades for wide range of SAF
- Coordinated with academia


HIGH-FIDELITY COMBUSTION

- Mid-size combustor CFD simulation
- Gold-standard CFD to assess SAF
- Unifies multi-physics sub-models
- Uses ALCF, LCRC
- Predictive abilities; validation of engineering tools
- Assess critical FOMs and emissions/contrails

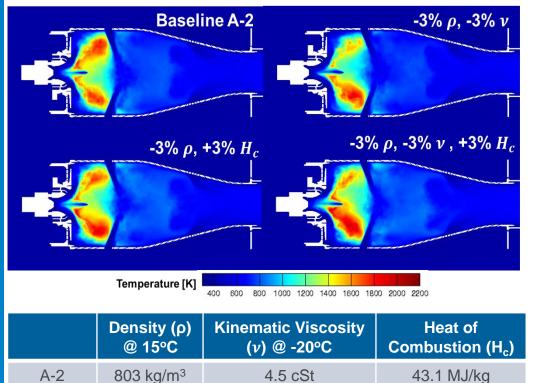

Fuels: A-2, C-1 -> HEFA-SPK, ATJ

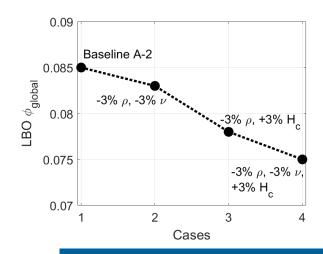

JICF X-RAY EXPERIMENTS AND VOF SIMULATIONS



X-RAY SPRAY INPUTS FOR COMBUSTION SIMULATIONS

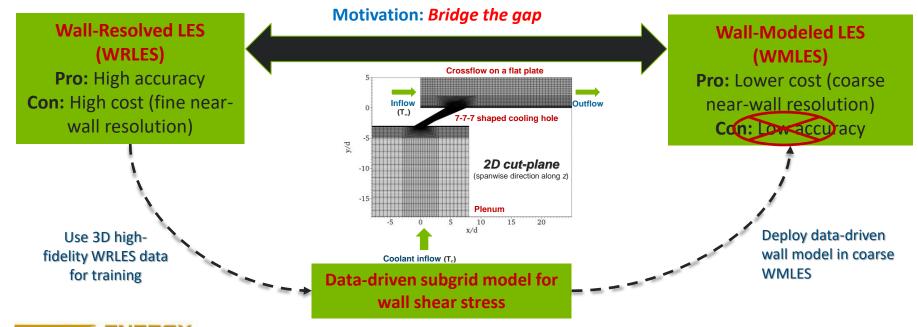
- X-rays provide initial spray conditions
- Prior work (in NJFCP) used downstream PDPA measurements to initialize sprays





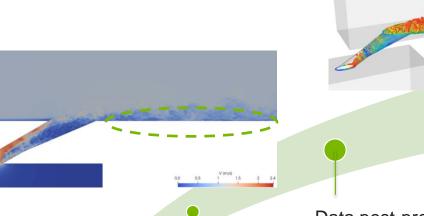
ARE SAF FULLY "DROP-IN"?

NJFCP Referee Rig simulations



- Fuel property changes are within ASTM limits for being drop-in!
- Small changes lead to changes in temperature and species distributions resulting in heat release changes and lean blow out limits

ML-BASED SUB-GRID SCALE MODEL FOR GAS TURBINE FILM COOLING



DATA-DRIVEN WALL MODEL DEVELOPMENT

Vel. Mag. 0.3 0.6 0.9 1.2

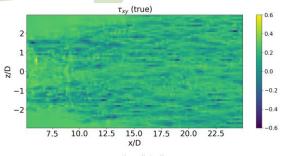
Hyperparameter optimization

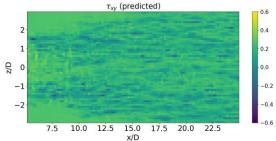
Data post-processing to extract flow datasets for ML training

$$u_i, \frac{\partial u_j}{\partial x_i}, \frac{\mathrm{d}p}{\mathrm{d}x_i}, \rho, \mu, \tau_{xy}, \text{ etc.}$$

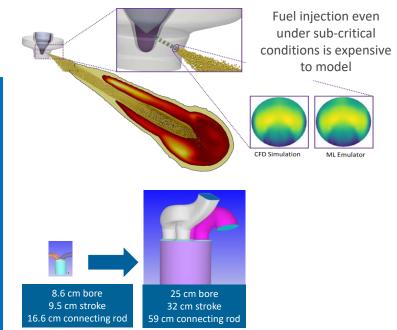
High-fidelity WRLES for different blowing ratios, hole angle using Nek5000

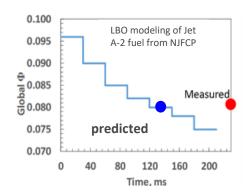
AIAA SciTech 2022-1404


Nunno et al.


Kumar et al. AIAA SciTech 2023-1254

CUDA for GPU training


A priori & A posteriori validation



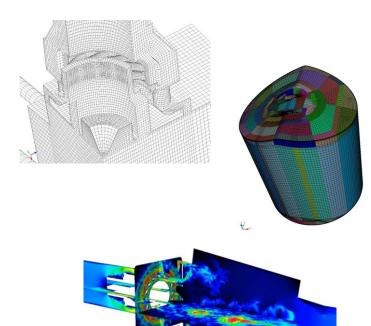


CONCLUDING REMARKS

- Ability to rapidly predict and understand causalities of rare events, e.g., engine knock, pre-ignition, flashback, lean blowout, etc.
 - Long time-scale problem with large run times
 - Persistent across all combustion domains, especially with alternate fuels
- Sub-critical, trans-critical and supercritical transition for fuel injection and multi-regime combustion.
- Conjugate heat transfer and effect of fuels
- ECP funded codes have capability for DNS like calcs using hybrid architectures. Lot of ground-truth data developed but have not been mined for ROMs.
- Can foundational models for combustion help?
- Technology transfer to industry to accelerate pace of innovation!

ACKNOWLEDGEMENTS

- Workshop organizing committee
- Sponsors for work being presented:
 - DOE, Vehicle Technologies Office: Gurpreet Singh, Kevin Stork, Siddiq Khan
 - DOE, FECM: Robert Schrecengost, John Crane
 - Army Research Laboratory, Mike Kweon, Jacob Temme, Eric Mayhew
 - Aramco Services Company: Yuanjiang Pei, David Cleary, & team
- Computational Team Members: Riccardo Scarcelli, Muhsin Ameen, Roberto Torelli, Pinaki Pal, Chao Xu, Debolina Dasgupta, Lorenzo Nocivelli, Joohan Kim, Sinan Demir, Saumil Patel and several postdocs.
- **Experimental Team Members:** Doug Longman, Chris Powell, Muni Biruduganti, Scott Goldsborough, Sreenath Gupta, Essam El-Hannouny, Brandon Sforzo, Alan Kastengren and several postdocs.
- Several Industry partners: Convergent Science Inc., Cummins, Caterpillar, RTRC, Wabtec, GE, etc.
- Several Academic Partners: Paul Fischer (UIUC), Tonghun Lee (UIUC), Tianfeng Lu (UConn), ...
- Computing resources:
 - Laboratory Computing Resource Center, Argonne Leadership Computing Facility
 - Advanced Photon Source, Argonne
 - 2021 INCITE Computing Award, Several ALCC awards



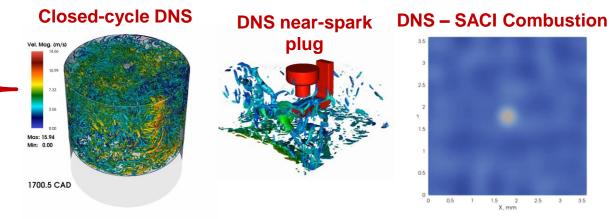
GOLD-STANDARD DNS/LES

Nek5000/NekRS: Exascale CFD Code

- Spectral element method (SEM):
 - Solution represented as Nth order tensor-product polynomials (N~ 5-15)
 - Exponential (spectral) convergence with N
- Semi-implicit and characteristic-based temporal schemes (up to 3rd order accurate)
- Supports fully unstructured hexahedral meshes generated using 3rd party softwares (Pointwise, Cubit)
- NekRS GPU variant of Nek5000:
 - GPU-ready exascale code
 - Successfully deployed on Polaris, Frontier, and Aurora
- Nek5000 (CPU version) can also handle Lagrangian sprays and fully compressible flows (shocks, detonations)
- Other features: CHT, moving/deforming meshes, overlapping grids, LES/RANS turbulence models
- Ideal for <u>gold-standard DNS/LES</u> for complex flow problems and develop/improve <u>physics-based and ML-based models</u>

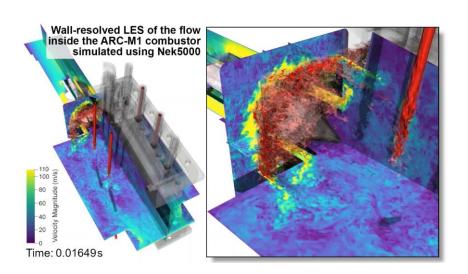

3.00

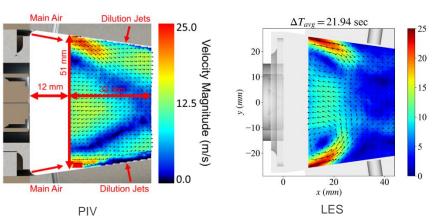
1.50



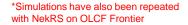
DNS OF ICE FLOWS WITH Nek5000

Multi-cycle LES showed good agreement with PIV. Flow-field used to investigate causes of CCV.


- LES > 95M grid points, scales on >16K procs
- DNS > 430M grid points, scales on >51K procs


Developed improved heat transfer, ignition, and combustion models for industry use

WALL-RESOLVED LES OF GAS TURBINE FLOWS



- Wall-resolved LES of the flow inside the ARC-M1 combustor performed using Nek5000*
- Simulations provided key insights into the turbulent flow structures, recirculation zones, and flow interactions between main and dilution flows
- POD analysis was performed to investigate turbulent flow structures

Simulation parameters			
Polynomial order	7		
Element count	1.1M		
Number of grid points	580M		
Max/Min Δx	0.52/0.005 mm		
Reynolds number	58,200		
Wall time/FTT	24 hrs (256 nodes on Theta)		

SURROGATE MODELING OF THE IMPACT OF MANUFACTURING UNCERTAINTIES ON GAS TURBINE FILM COOLING EFFICIENCY

Multi-fidelity deep learning to predict the effect of in-hole surface roughness on film cooling effectiveness

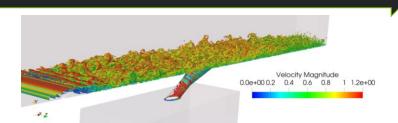
Wall-resolved LES (WRLES)

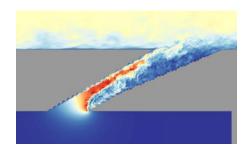
High accuracy, high cost

Wall-modeled LES (WMLES)

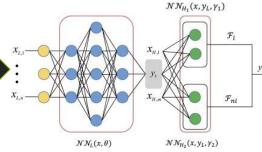
Medium accuracy, medium cost

Unsteady RANS


Low accuracy, low cost


Hierarchy of CFD model fidelities in NekRS

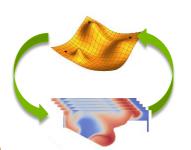
DOE-AMMTO



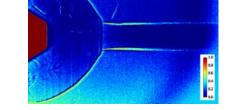
Multi-fidelity simulation dataset

Rough cooling hole

Composite NN surrogate model to quantify surface roughness effects



Jarrah et al.
AIAA Aviation 2024-1404


TECHNOLOGY TRANSFER TO INDUSTRY

Al based optimization tools and x-ray data transferred to software vendors

Argonne's data and tools are integrated into Cummins's Analysis Lead Design process for design of fuel injector and combustion systems

Improved efficiency and reduced soot by designing new pistons & injection strategies

Assisted Progress Rail improve efficiency and meet Tier – 4 compliance with single cylinder engine research

