7th Thermal-Mechanical-Chemical Energy Storage Workshop July 2025

DATA CENTERS – CAN LDES SOLUTIONS FIT THE CURRENT NEED

STRATEGIC ASSESSMENT: DATA CENTER

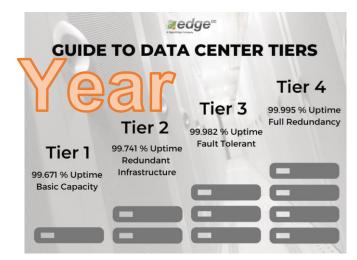
David K. Bellman All Energy Consulting / Skylar Capital / SynMax / SGT Global

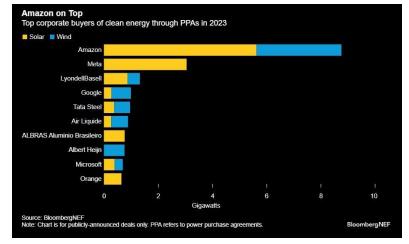
Datacenter

Tier 1 – 28.8 Hours Downtime per year

Last

Tier 2 – 22 Hours Downtime per year


Tier 3 – 1.6 Hours Downtime per year


Tier 4 – 26.3 Minutes Downtime per year

Lead times for backup diesel generators 18mth+

Economics of Datacenter is not that complicated and yes it can be very lucrative .

10 MW Build					
Datacenter Build	\$ 360,000,000				
H100	7840	Unit			
Utilization of Datacenter	75%				
Power Price Cases \$/MWh	100		1000	2000	3000
Cost of Power	\$ 9,385,714	\$	93,857,143	\$187,714,286	\$ 281,571,429
H100 Rental	5	\$/Hr			
Potential Annual Revenue	\$ 257,544,000				
Power % of Revenue	4%		36%	73%	109%

The PRICE is right!

They are paying north of \$150/MWh!

(\$240Million/(200 MW x 8760 x 0.9) = \$152/MWh!

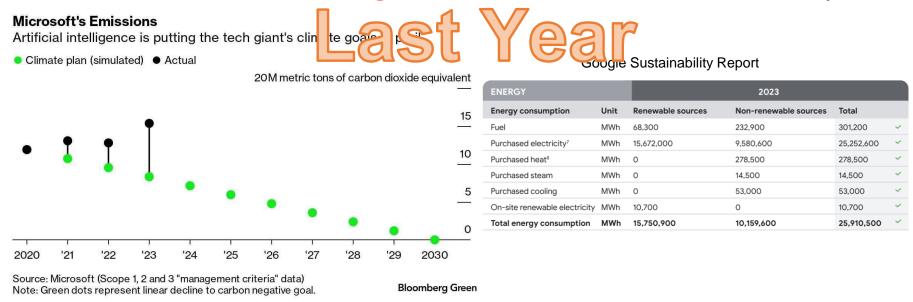
Helios Value Creation Opportunity

The value creation opportunity at Helios is enormous; every 200MW gross (133MW Critical IT load assuming 1.5 PUE) leased results in:

- \$240MM of revenue (\$1.8MM of revenue per MW of critical IT load per CoreWeave lease)
- \$216MM of EBITDA (90% EBITDA margin, per mgmt. guidance as lease is structured as Triple Net)
- \$4.9MM of enterprise value (assuming 22.5x EBITDA multiple, which represents discount to public and M&A data center comps at ~25x+)
- \$3.4B of equity value (assumes 80% LTC construction financing, per mgmt. guidance; 12% rate assumed for purposes of conservatism)
 Note: The required equity investment is limited beyond amounts funded for the first 600MW at Helios. At stabilization, the construction loan will be refinanced out with lower cost debt, and refinancing proceeds will exceed the construction loan principal, with excess proceeds "recycled" as equity into new development

MW (Gross)	200
PUE	1.5
MW (Critical IT)	133
CapEx \$ per MW (Critical IT Load)	\$ 12
Total CapEx	\$ 1,600
Loan to Cost ("LTC")	 80.0%
Construction Loan (\$)	\$ 1,280
Required Equity from GLXY (per 200MW Gross)	\$ 320

Stabilized EBITDA, Valuation, and Retu	rns	
Rev. per MW - Critical IT Load (Year. 1)	\$	1.8
Revenue (Year 1)	\$	240
EBITDA Margin		90.0%
EBITDA (Year 1)	\$	216
Assumed EBITDA Multiple	2000	22.5x
Enterprise Value	\$	4,860
Less: Construction Loan Principal		(1,280)
Less: Construction Loan Interest (1-yr., 12% All-In)		(154)
GLXY Equity Value (per 200MW Gross)	\$	3,426


Galaxy has already signed up 600MW gross MW capacity on these terms, which results in ~\$650MM of expected EBITDA; Assuming a 22.5x EV / EBITDA multiple and 80% construction LTV, the existing 600MW leased implies \$10.3B of equity value

						Total	Equity Value	e Helios (US	SD)						
EBITDA	(\$MMs)	Gross MW	Critical IT)				Estima	ted EBITDA	d EBITDA Multiple					
				17.5x	18.5x	19.5x	20.5x	21.5x	22.5x	23.5x	24.5x	25.5x	26.5x	27.5x	
\$	216	200	133	\$ 2,346	\$ 2,562	\$ 2,77	3 \$ 2,994	\$ 3,210	\$ 3,426	\$ 3,642	\$ 3,858	\$ 4,074	\$ 4,290	\$ 4,506	
	432	400	267	4,693	5,125	5,55	5,989	6,421	6,853	7,285	7,717	8,149	8,581	9,013	
	648	600	400	7,039	7,687	8,33	8,983	9,631	10,279	10,927	11,575	12,223	12,871	13,519	
	864	800	533	9,386	10,250	11,11	11,978	12,842	13,706	14,570	15,434	16,298	17,162	18,026	
	1,080	1,000	667	11,732	12,812	13,89	14,972	16,052	17,132	18,212	19,292	20,372	21,452	22,532	
	1,296	1,200	800	14,078	15,374	16,67	17,966	19,262	20,558	21,854	23,150	24,446	25,742	27,038	
	1,512	1,400	933	16,425	17,937	19,44	20,961	22,473	23,985	25,497	27,009	28,521	30,033	31,545	
	1,728	1,600	1,067	18,771	20,499	22,22	23,955	25,683	27,411	29,139	30,867	32,595	34,323	36,051	
	1,944	1,800	1,200	21,118	23,062	25,00	26,950	28,894	30,838	32,782	34,726	36,670	38,614	40,558	
	2,160	2,000	1,333	23,464	25,624	27,78	29,944	32,104	34,264	36,424	38,584	40,744	42,904	45,064	
	2,376	2,200	1,467	25,810	28,186	30,56	2 32,938	35,314	37,690	40,066	42,442	44,818	47,194	49,570	
	2,592	2,400	1,600	28,157	30,749	33,34	1 35,933	38,525	41,117	43,709	46,301	48,893	51,485	54,077	
	2,700	2,500	1,667	29,330	32,030	34,73	37,430	40,130	42,830	45,530	48,230	50,930	53,630	56,330	

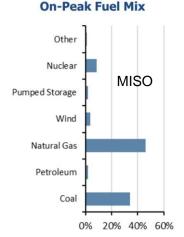
800MW Gross / 533MW Critical IT Load: Total currently approved capacity at Helios; \$13.7B of equity value at 22.5x EBITDA multiple 1,600MW Gross / 1,067MW Critical IT Load: Includes 800MW of incremental capacity expected to be approved in "single digit months"; \$27.4B of equity value at 22.5x EBITDA multiple

2,500MW Gross / 1,667MW Critical IT Load: Total potential capacity at Helios (800MW approved today plus full 1,700MW under load study approval); \$42.8B of equity value at 22.5x EBITDA multiple midpoint

Datacenters want to be green AND want ATC reliability

Is it possible to develop a cost-effective long-duration energy storage system that can address both short-term and long-term energy needs?

Such a system could be a game-changer if enabling facilities to achieve sustainability goals while simultaneously providing backup power capabilities.

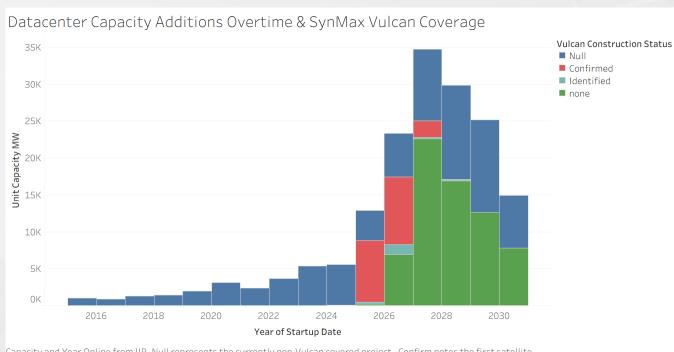

Being Green Requires More Work

Energy storage can play a crucial role in milimizer of significantly reduce their carbon footprint and contribute to a cleaner grid.

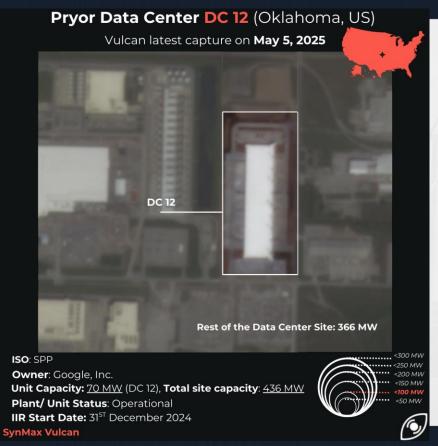
For facilities prioritizing CO2 reduction, strategically deploying battery storage with a capacity of approximately 12 hours a day can minimize carbon emissions.

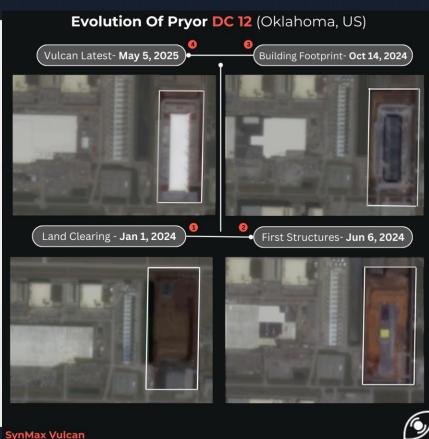
In this scenario, the primary driver for storage adoption is not cost reduction, but rather CO2 emissions reduction.

Other



Datacenter Map 2030





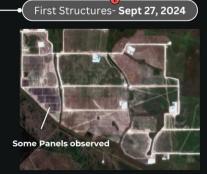
Capacity and Year Online from IIR. Null represents the currently non-Vulcan covered project. Confirm notes the first satellite image shows construction signs. None notes the project does not show any construction signs - no land clearing or structure at the site.

Oriana Solar Plant (Victoria County, Texas, US) Vulcan latest capture on Apr 13, 2025

ISO: ERCOT

Owner: Oriana Solar LLC

Capacity: 180 MW

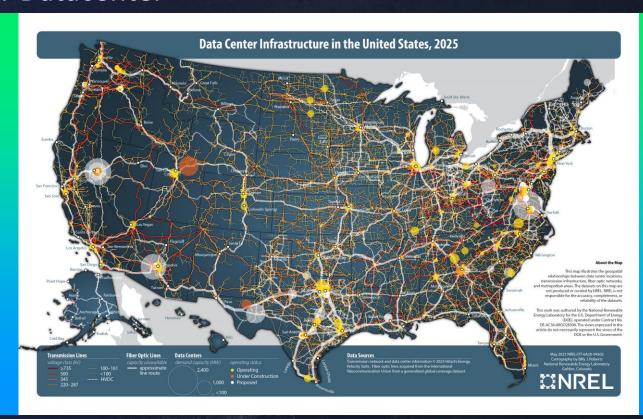

Expected Online: June 2025

Evolution Of Oriana Solar Plant (Victoria County, Texas)

Datacenter Bubble

The potential for a "winner-take-all" outcome is a significant driver behind the current build-out.

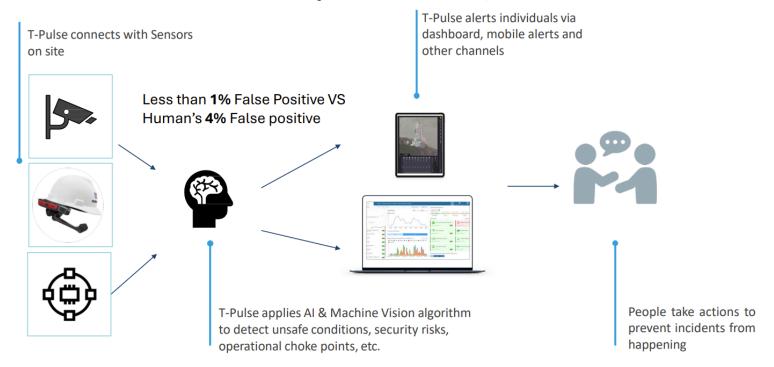
Annual advertising revenue for Google, Meta, and Amazon collectively stands at approximately \$460 billion.


A projected investment of \$2 trillion could potentially yield a return approaching 20% over 10 years, assuming a strategy to capture a substantial share of this market.

Current spending by publicly traded companies is around \$300 billion annually, translating to an estimated 10-15 GW of capacity per year. If this accounts for 60% of total spending, the overall market could be between 16-25 GW annually.

Infrastructure for Datacenter

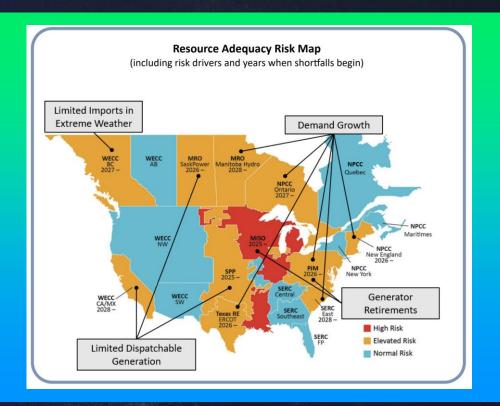
Sites are being picked away – optimal site offers reliable power, fiber, and workforce.



Why AI/ML?

Case study showing the value AI/ML can bring to society:

T-PULSE assures OSHA compliance with AI/ML – 400+ Models


Sgt SGLOBAL

July 25

NERC Longterm Reliability Assessment 2024

Error in MISO found a few weeks ago.

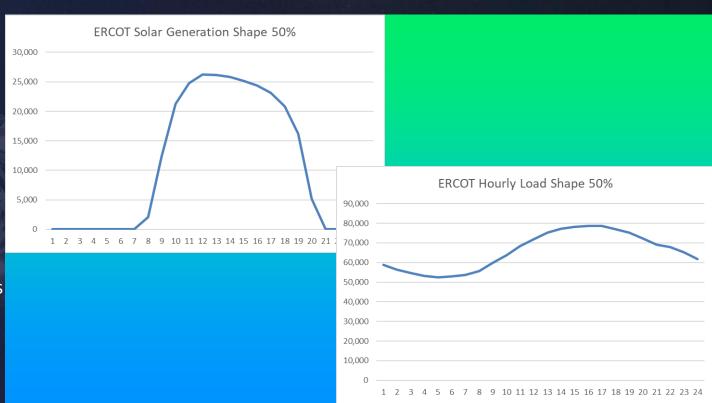
NERC now notes MISO is not in the high risk category but elevated.

NERC Summer Assesment 2025

Summer highlights current issues are overall in the range for typical outages.

Extreme conditions cause the West and TX and parts of MISO in the negatives.

Table 2: Seasonal Risk Scenario On-Peak Reserve Margins								
Assessment Area	Anticipated Reserve Margin	Anticipated Reserve Margin with Typical Outages	Anticipated Reserve Margin with Higher Demand, Outages, Derates in Extreme Conditions					
MISO	24.7%	9.3%	-1.9%					
MRO-Manitoba	14.6%	11.2%	3.8%					
MRO-SaskPower	33.5%	28.3%	22.4%					
MRO-SPP	28.5%	18.2%	3.4%					
NPCC-Maritimes	42.2%	31.7%	18.6%					
NPCC-New England	14.1%	3.9%	4.0%					
NPCC-New York	31.6%	12.5%	5.2%					
NPCC-Ontario	23.4%	23.4%	3.7%					
NPCC-Québec	32.7%	28.2%	19.1%					
PJM	24.7%	15.0%	5.3%					
SERC-C	19.6%	12.7%	3.2%					
SERC-E	29.1%	21.8%	13.0%					
SERC-FP	20.2%	14.0%	11.8%					
SERC-SE	41.3%	37.7%	12.5%					
TRE-ERCOT	43.2%	33.0%	-5.1%					
WECC-AB	42.6%	40.3%	20.5%					
WECC-Basin	24.3%	15.9%	-27.2%					
WECC-BC	24.3%	24.2%	-6.6%					
WECC-CA	56.9%	51.0%	4.7%					
WECC-Mex	14.1%	1.6%	-16.8%					
WECC-NW	32.1%	29.4%	-13.0%					
WECC-RM	25.7%	18.2%	-18.9%					
WECC-SW	22.3%	14.0%	-13.0%					

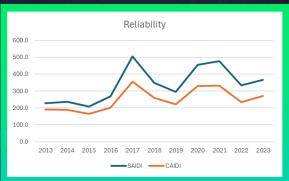

Peak Demand?

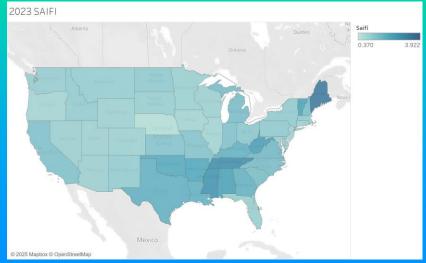
With solar the impact of peak demand is not as obvious.

By 9pm the solar is gone but load has also dropped off by nearly 13%.

Coincidently the winter vs. summer peak is around 14%.

Therefore if solar exceeds 13% of total generation in peak other generation is needed by 9 pm.

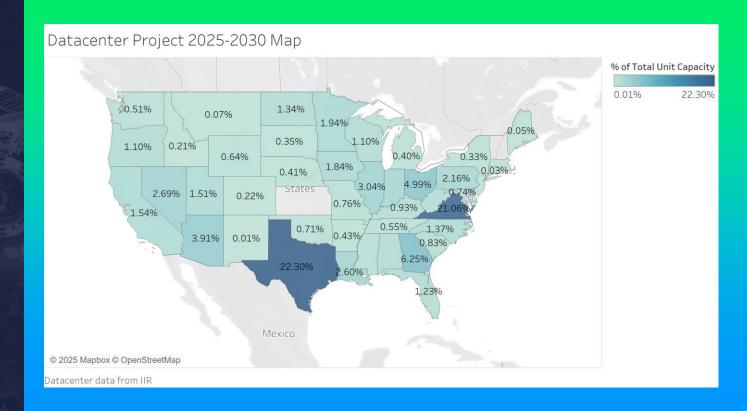



Reliability

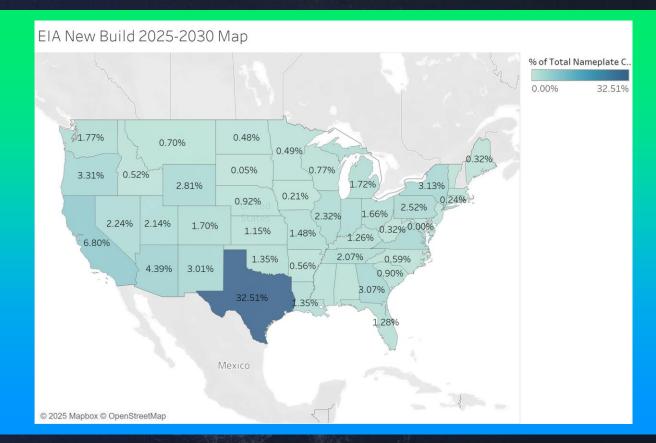
SAIDI = System Average Interruption Duration Index. It is the minutes of non-momentary electric interruptions, per year, the average customer experienced.

CAIDI = Customer Average Interruption Duration Index. It is average number of minutes it takes to restore non-momentary electric interruptions.

SAIFI = System Average Interruption Frequency Index. It is the number of non-momentary electric interruptions, per year, the average customer experienced.



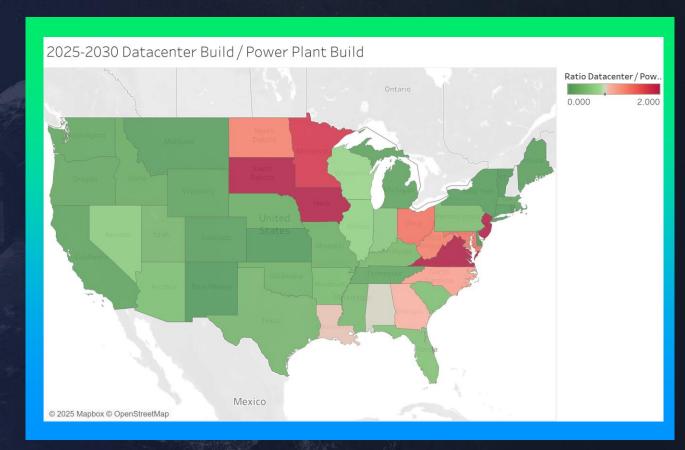
Datacenter Projects by State


Largest growth for datacenters seen in TX and VA

Power Plant Projects by State

A clear leader in generation projects is ERCOT.

ERCOT is more likely to be able to meet the datacenter load growth.

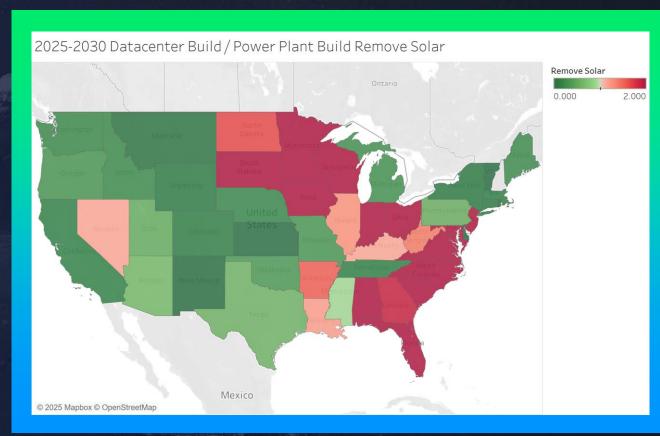


Datacenter Additions / Power Plant Additions

Certain states are depending on transmissions e.g. NJ and VA.

LA, GA, AL, SD, IA are using up their surplus.

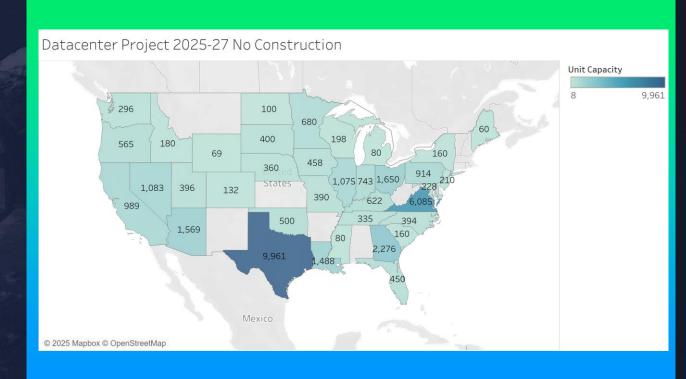
However, the distribution system will also be stressed.



Datacenter Additions / Power Plant Additions Removing Solar

The AI datacenters are not going to shut off at night and the load drop is not enough to make up for the loss of solar in many states.

Solar builds are 47% percent of the builds till 2030.


Resource planners need to go back to the dispatch models and refine the loss of load cases.

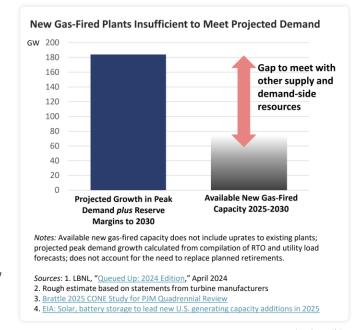
Datacenters without signs of Construction

With datacenter constructions averaging around 2 years, we have over 36 GW not in construction yet but with an online date sooner than 2027.

VA projects likely at risk given timing and limited expansion.

Enough supply with the amount of load?

Gas supply chain is tight.


McKinsey notes 150 GW additional data center demand coming by 2030.

Solutions still coming from policy side - In Texas Senate Bill 6 allows utilities to curtail loads greater than 75 MW during firm load sheds.

Resource Adequacy Challenge: Gas-Fired Alone Will Not Meet the Need

Next 5 years will need new capacity for 160 GW peak growth *plus* reserve margin and replacing retirements

- Retention is important where needed and cost effective
- All new supply resources have lead times for development, equipment, construction, and interconnection
- New gas-fired generation will be limited by supply chains:
 - <80 GW in interconnection queues¹ and not all will be built²
 - Supply chains may limit development to closer to 50 GW by 2030
 - Lead times for turbines mean 50 months to build a CC, 44 for CT³
- Many more resources will be needed to meet the gap:
 - BESS, wind and solar
 - > >2 TW ICAP in queues is vast, even if resource adequacy value is derated
 - 2025 has 18 GW BESS, 33 GW utility-scale PV, 8 GW wind planned⁴
 - Loss of tax credits will reduce builds dramatically
 - Demand side: DR/VPPs, energy efficiency... more cost effective now
 - Uprates and restarts (though these are limited)
- Tx interconnection must be further expedited, and behindthe meter resource additions

Combined Cycle Economics not Aligned with Natural Gas & Power Futures

As of 6/26/25

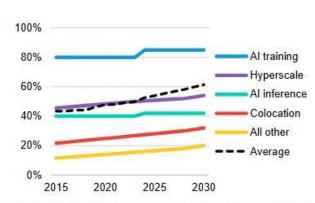
Cal 2027:

Henry: \$4/mmbtu

PJM W On-Peak:

\$62.95/MWh

ERCOT-N On-Peak: \$60.72/MWh


CC LCOE Analysis									
Capital Cost \$/kW	1000	2000	2000	2000	2000				
Discount Rate	8	8	8	8	12				
Period Year	20	20	20	20	20				
Capacity Factor	65	65	50	50	50				
FOM \$/kW-yr	25	25	25	25	25				
VOM \$/MWh	3	3	3	3	3				
Heat Rate mmbtu/MW	7	7	7	7	7				
Fuel Cost \$/mmbtu	4	4	4	5	5				
LCOE\$/MWh	53	71	83	90	105				

Variable Impact on LCOE	\$/MWh
2X Capital Cost	18
Reduce Capacity Factor by 15%	12
Gas Price Up by \$1/mmbtu	7
Discount Rate Increase 50%	15

Data center demand vary by type

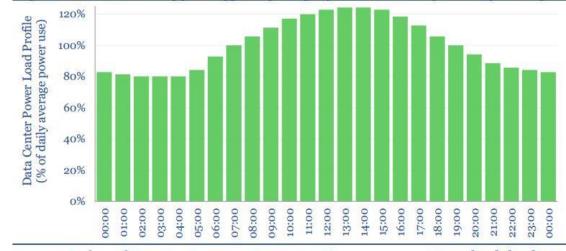

Al Training highest utilization rates but still vary usage during the day

Figure 9: Server utilization rate by date center type

Source: BloombergNEF, Lawrence Berkeley National Lab. Note: Average utilization rate is capacity weighted.

Fig 2. Data-center energy use typically ranges from 80-125% of its daily average?

Source: Technical Papers, Company Reports, TSE

Download the data?

Volatility Solutions Needed

Al workloads are different Even off-grid solutions still must deal with the intraday/intra-hour volatility.

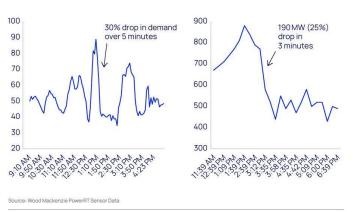
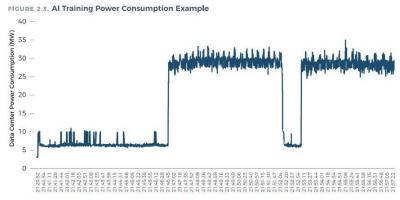




Figure 3: Real-time power consumption from two US hyperscale data centres (MW)

New and challenging load consumption patterns have been observed particularly for Al data centers, which can pose potential grid stability and reliability risks and thus must be effectively modeled, studied, and mitigated.

Data center energy needs

- 1. Time to market its an arms race they need it now!
 - Good news: Policies are pushing for Data Center coming online fast e.g. SPP "flexibility rule" 90-day interconnection along as data center agrees to cut demand or transfer to back up generation when the grid is strained. ERCOT is also on track to offer something similar.
- 2. Energy must be there all the time when they need it! LOTS of redundancy! Outages beyond 4 hr exist!
- 3. Their load can go up and down intra-hour so they need power sources that can handle that!
- 4. If the above can be done they would *like* it to be green....

Can your LDES technology fill this need?