Oil-Free, Bearingless Motors

Eric Severson

Associate Professor sever@umn.edu
July 30, 2025

Problem: Bearings Limit Electrically-Driven Turbomachinery

Process Compatibility

Ball Journal

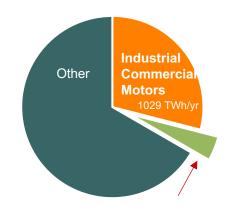
Source: SKF Source: Miba

Oil-Free

Gas Foil

Source: Sulzer

Externally Pressurized

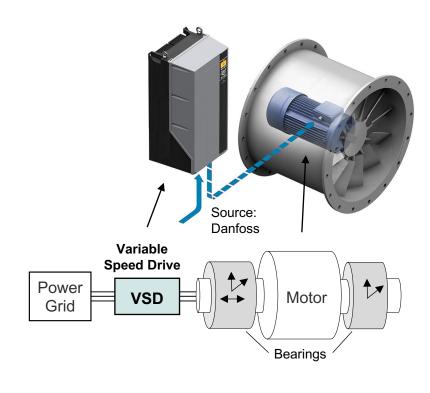

Magnetic

Source: S2M

Source: Isotech

Low Efficiency

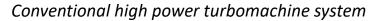
US Electricity Consumption

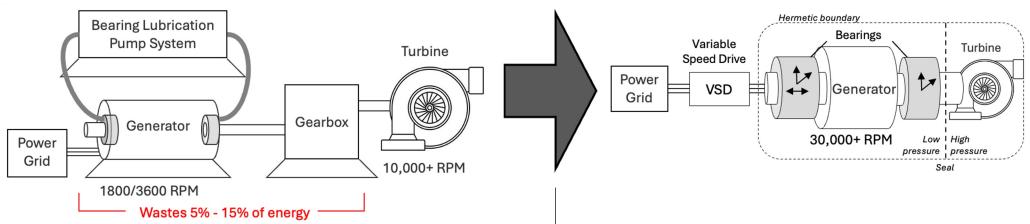

Variable Speed Drive (VSD) potential energy savings: 115 TWh/year

>11% of US electricity!

Per DOE: VSDs are cost effective in >75% of systems, but only adopted in 10%.

Why?


Limited Reliability



- → VSDs increase motor failure rates by 3x
- → 60% of motor failures due to bearings

Problem: Closed Brayton Cycles Limited By Bearings

Need for cost-effective bearings that operate in hermetic environment

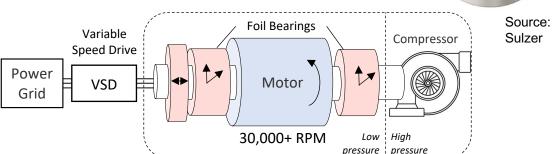
- Large size → compromises the power density advantages of fluids like sCO2
- High cost → dry gas seals
- Maintenance, reliability concerns

- Compact and highly integrated
- Needs oil-free bearings
 - Gas: foil or externally pressurized

Hermetic systems that are limited by bearing technology

- Maglev
- Current technology has shortcomings

Today's Hermetic Bearing Solutions

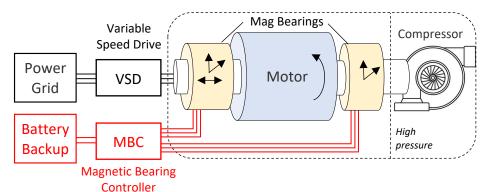

Gas Foil

- Benefits
 - Completely passive operation
 - No pass-throughs into cavity

Challenges

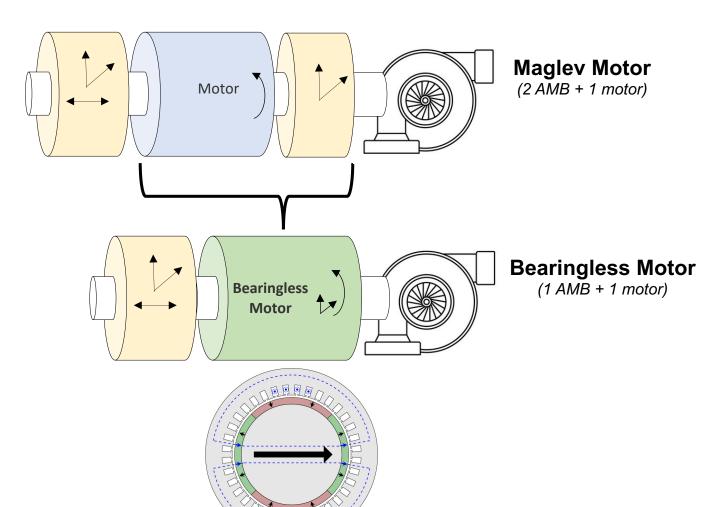
- Wear during start/stop
 - Limits maximum shaft weight / lifetime
 - < 200 kW
- Reputation for low damping

Active Magnetic


Benefits

- Works for large shafts
- Excellent vibration / acoustics
- System health monitoring

Challenges


- High cost
- Increased axial shaft length
- Large number of passthroughs

Our Solution: Bearingless Motors

Motor technology that controls magnetic forces on shaft

Technology:

- Standard motor + new winding
- Standard VFD
- No performance degradation
- Support rotor weight with 5% power reduction

AMB: Active Magnetic Bearing

Status: Benchtop Demonstrations Complete

Bearingless PM Machines

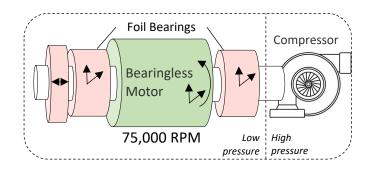
- 1. 1 kW, 30,000 r/min Motor
- 2. 10 kW, 160,000 r/min Motor
- 3. 3.4 kW, 35,000 r/min "Twin" Motor
- 4. 13 kW, 140,000 r/min "Twin" Motor
- 5. 50 kW, 80,000 r/min Generator
- 6. 13 kW, 160,000 r//min Motor + foil bearings

Bearingless Induction Machines

7. 3.6 kW, 30,000 r/min Motor

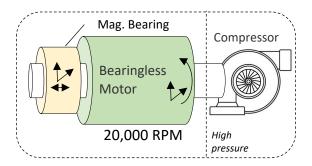
AC Homopolar Machines (for flywheels)

- 8. 1 kW, 3,600 r/min Motor
- 9. 6 kW, 10,000 r/min Motor/Generator



Status: Upcoming Application-Scale Demonstrations

Assisting Foil Bearings


Create radial shaft forces to enable foil bearing use for large shafts

- Low cost
- Few components and passthroughs

Planned demonstration unit

- 100 kW
- 75 kRPM
- sCO2 turbomachine from Sandia Brayton Lab

Removing Magnetic Bearings

Use bearingless motor to eliminate a magnetic bearing actuator

- Largest shafts
- Best rotor dynamics

Planned demonstration unit

- 200 kW
- 20 kRPM
- Dyno testing planned for spring 2026

Next Steps: Looking for Partners!

- Basic science figured out
- Focus on customization and demonstration
- Looking for collaborators
 - Application scale demonstrations
 - SBIR/STTR proposals
- Goal: commercialization

Interested in learning more? Contact us:

Eric Severson

sever@umn.edu

