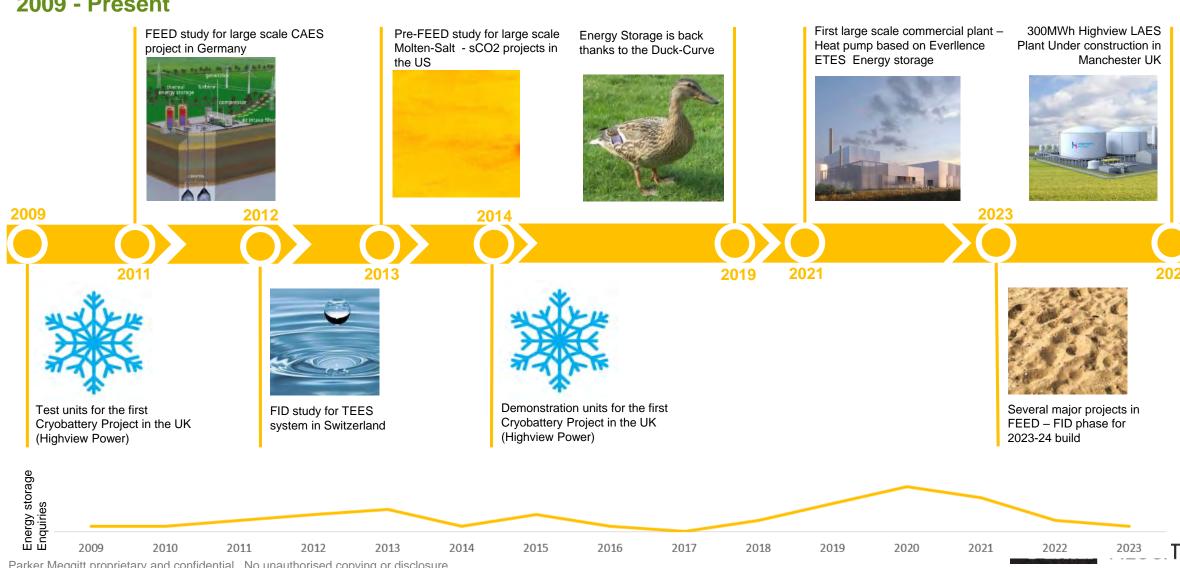


Optimisation of Compact Heat Exchangers for Thermal Energy Storage

Renaud Le Pierres - Sales & Business Development Team

July 2025

Parker Meggitt proprietary and confidential. No unauthorised copying or disclosure


CURRENT EXPERIENCE

HEATRIC'S INVOLVEMENT INTO ENERGY STORAGE CONCEPTS TO DATE

Heatric Thermal Energy Storage Enquiries Timeline

2009 - Present

CRYOGENIC STORAGE – HIGHVIEW POWER

2009 – 2019: Proving and validating the Technology

Highview Power®

2009 – 2013: Slough test site

- Proof of concept successful with operation until site closure 2013
- 3 exchangers supplied

Slough test site PCHEs

2014 – 2019: Bury Viridor Demonstration site

- Demonstration plant successfully operated until site closure 2019
- 2 exchangers supplied

Bury Demo site Evaporator and HX1 (front)

CRYOGENIC STORAGE – HIGHVIEW POWER

2025: Carrington 300MWh LAES

50 Mwe - 6 hours duration - £325m Total financing

- Ability to charge and discharge at the same time
- Plans to develop four new 2.5GWh power plants in the UK by 2030

HEAT EXCHANGERS FOR ENERGY STORAGE

REQUIREMENTS

DESIGN OF HEAT EXCHANGER

REQUIREMENTS

The ideal heat exchanger ... can it be done?

- There has been an increase in customers asking us for Long Duration (10/100's MWhrs) energy storage heat exchangers.
- Such exchangers, which easily require 1,000s m² of heat transfer, are required to deliver many if not all of the following:
 - 1. High Performance to maximise OPEX by increasing RTE (Round Trip Efficiency) / minimise losses
 - 2. Compact and light to facilitate integration into tight space / remote area / reduce installation cost
 - 3. Fast Thermal Response to minimise start-up time to optimal operating conditions
 - 4. Robust, but depending on cycles and / or storage medium:
 - high pressures
 - high temperatures
 - Corrosion
 - Aperture size / pressure drop
 - 5. Made in large size / quantities / modularised
 - 6. Cheap to reduce overall CAPEX

REQUIREMENTS

The ideal heat exchanger ... can it be done Designed?

- There has been an increase in customers asking us for Long Duration (10/100's MWhrs) energy storage heat exchangers.
- Such exchangers, which easily require 1,000s m² of heat transfer, are required to deliver many if not all of the following:
 - 1. High Performance to maximise OPEX by increasing RTE (Round Trip Efficiency) / minimise losses
 - 2. Compact and light to facilitate integration into tight space / remote area / reduce installation cost
 - 3. Fast Thermal Response to minimise start-up time to optimal operating conditions
 - 4. Robust, but depending on cycles and / or storage medium:
 - high pressures
 - high temperatures
 - Corrosion
 - Aperture size / pressure drop
 - 5. Made in large size / quantities / modularised
 - 6. Cheap to reduce overall CAPEX

WHAT IS A HEAT EXCHANGER (INDIRECT CONTACT)

Wikipedia:

• A **heat exchanger** is a system used to transfer heat between a source and a <u>working fluid</u>. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in <u>space</u> <u>heating</u>, <u>refrigeration</u>, <u>air conditioning</u>, <u>power stations</u>, <u>chemical plants</u>, <u>petrochemical plants</u>, <u>petroleum refineries</u>, <u>natural-gas processing</u>, and <u>sewage treatment</u>.

Al Overview (Google):

 A heat exchanger is a device that facilitates heat transfer between two or more fluids (liquids or gases) without direct mixing of the fluids. It is designed to efficiently transfer thermal energy from a hotter fluid to a cooler one, or vice versa, and is used in a wide range of applications, including heating, ventilation, air conditioning, refrigeration, and various industrial processes.

Primary function of an indirect heat exchanger is:

to transfer heat between fluids flowing through the heat exchanger while kept separated from mixing

SOME BASICS OF HEAT EXCHANGE SIZING

Duty, Overall Heat Transfer Coefficient

The amount of heat that can be exchanged in a heat exchanger is expressed as follow:

 $Q = m \times cP \times dT$

Q – Heat Duty (kW/s)

M – Mass flow (kg/s)

cP – Heat capacity (J/kg-1 C-1)

dT – Temperature change between inlet and outlet of one side (K)

For the <u>same</u> heat duty, increasing **dT** will help reduce **M** thus the size of the exchanger and in principle its cost

And can be expressed as follow:

 $Q = U \times A \times LMTD$

Q – Heat Duty (kw/s)

U - Overall Heat Transfer coefficient (W/m2.K)

A - Heat Transfer Area (m2)

LMTD – Logarithmic average Mean Temperature Difference (K)

For the <u>same</u> heat duty, increasing A will help reduce LMTD and increase amount of heat transferred

SOME BASICS OF HEAT EXCHANGE SIZING

Duty, Overall Heat Transfer Coefficient

The overall heat transfer coefficient is expressed as follow:

$$U = 1 / (1/h1 + t/k + 1/h2)$$

U - Overall Heat Transfer coefficient (W/m2.K)

h1 – local convective heat transfer coefficient of fluid 1 (W/m2.K)

t – wall thickness between fluids (m)

k – thermal conductivity of the wall material (W/m.K)

h2 - local convective heat transfer coefficient of fluid 1 (W/m2.K)

The heat transfer rate is expressed as follow:

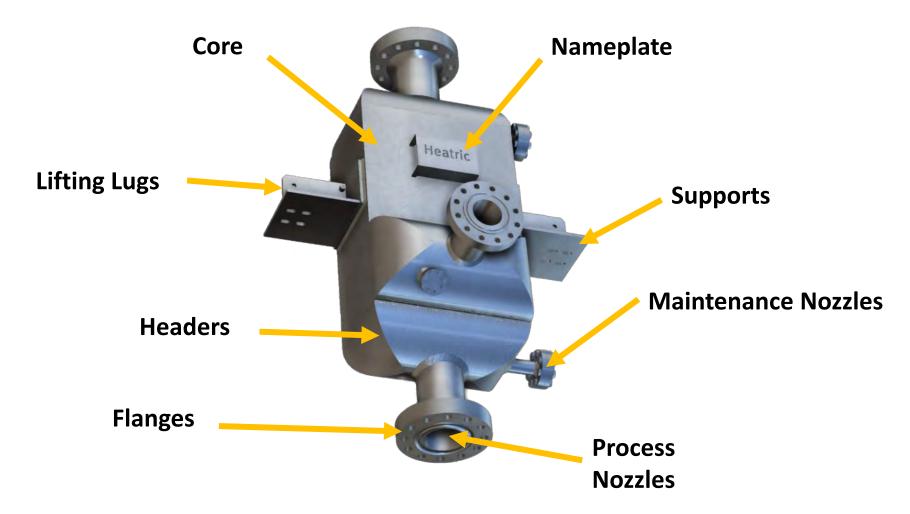
$$Q(t) = (k \times A \times (T1 - T2) / t$$

Q(t) – Rate of heat transfer (w/s)

k – thermal conductivity of the wall material (W/m.K)

A – Heat Transfer Area (m2)

T1-T2 – temperature difference between fluids (K)


t – wall thickness between fluids (m)

To increase Q(t), one can increase A, T1-T2 or reduce t

Fluid	Material in Transmission Surface	Fluid	Overall Heat Transmission Coefficient - U -		
			(Btu/(ft ² hr °F))	(W/(m ² K))	
Water	Cast Iron	Air or Gas	1.4	7.9	
Water	Mild Steel	Air or Gas	2.0	11.3	
Water	Copper	Air or Gas	2.3	13.1	
Water	Cast Iron	Water	40 - 50	230 - 280	
Water	Mild Steel	Water	60 - 70	340 - 400	
Water	Copper	Water	60 - 80	340 - 455	
Air	Cast Iron	Air	1.0	5.7	
Air	Mild Steel	Air	1.4	7.9	
Steam	Cast Iron	Air	2.0	11.3	
Steam	Mild Steel	Air	2.5	14.2	
Steam	Copper	Air	3.0	17	
Steam	Cast Iron	Water	160	910	
Steam	Mild Steel	Water	185	1050	
Steam	Copper	Water	205	1160	
Steam	Stainless Steel	Water	120	680	

Key Components of a Heatric PCHE

HEAT EXCHANGE DESIGN PHASES

Material selection

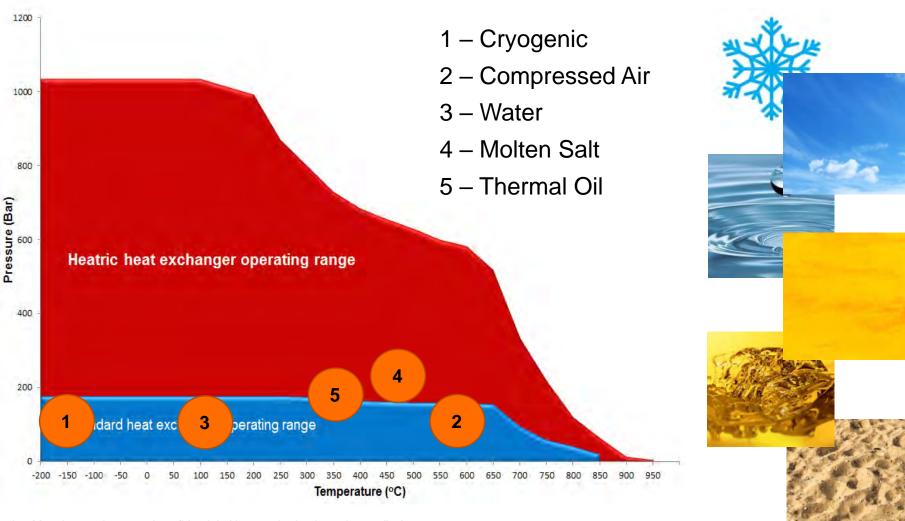
- Client requirement
- Availability of product form and grade
- Cost
- Mechanical and thermal strength
- Corrosion resistant
- Manufacturability (weldability and formability)

Hydraulic design

- Mass flow rate
- Overall pressure drop calculation
- Component losses (core, nozzles, headers)
- Other losses on components (manifolds, elbows), due to glycol or liquid injection and two-phase distributors if any)

Thermal design

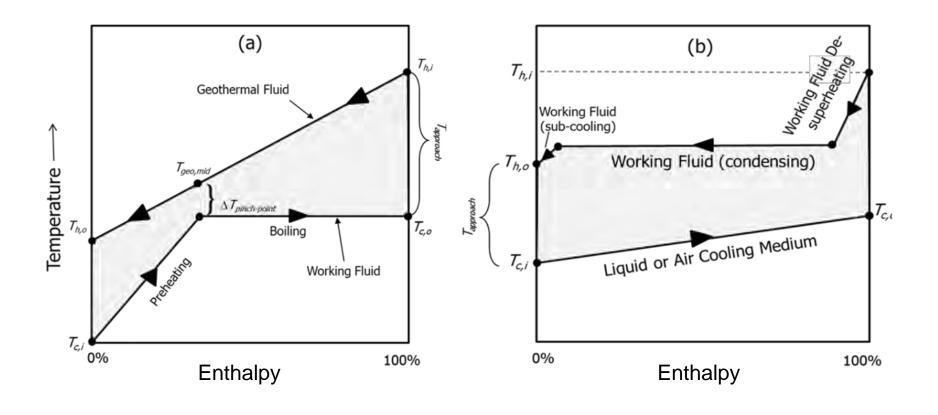
- All required thermal calculations and fouling
- · Plate and core sizing
- Flow pass configuration
- Design with multi-streams, if required
- Ensure maldistribution is avoided
- Optimizing to minimize cost vs. performance


Mechanical design

- Thermal and hydraulic design input
- Client design requirements
 - Basic design condition (pressure, temperature)
 - External loads (nozzle loads, wind, snow, motion)
- Design to Code rules (e.g. ASME BPVC VIII-1)
- FEA if required or design not covered by Core rules
- Creep and Fatigue analysis, if required
- Other specific loading condition

1) MATERIAL SELECTION

Storage mediums and process conditions dictates choice of materials



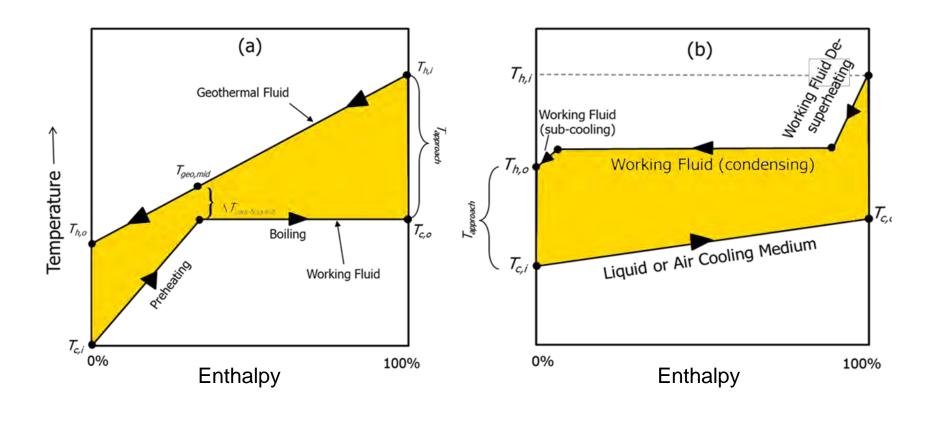
- 1 SS316
- 2 SS316
- 3 SS316
- 4 SS347
- 5 SS316

2) THERMAL DESIGN

A - Process conditions and associated fluid properties (Heat Release Curves)

We need:

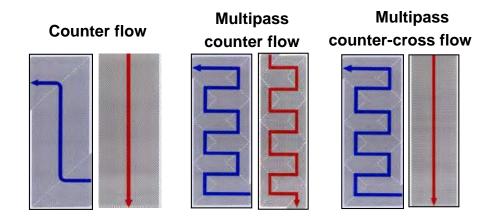
- Fluids
- Inlet and outlet temperatures
- Mass Flow rates
- Inlet Pressures
- Allowable Pressure Drops

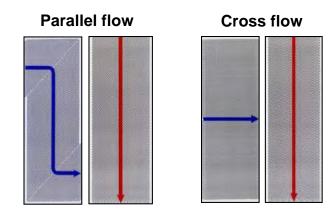

We get:

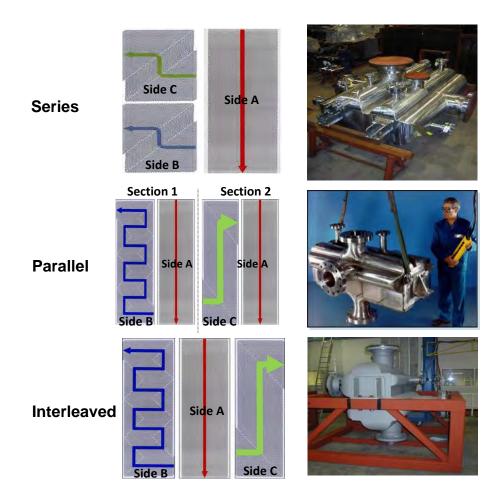
- Heat Capacity (cP)
- Thermal Conductivity (k)
- Density (ρ)
- Viscosity (µ)

2) THERMAL DESIGN

A - Process conditions and associated fluid properties (Heat Release Curves)


 $Q = U \times A \times LMTD$


 $Q = m \times cP \times dT$


2) THERMAL DESIGN

B – Flow configuration / plate arrangement

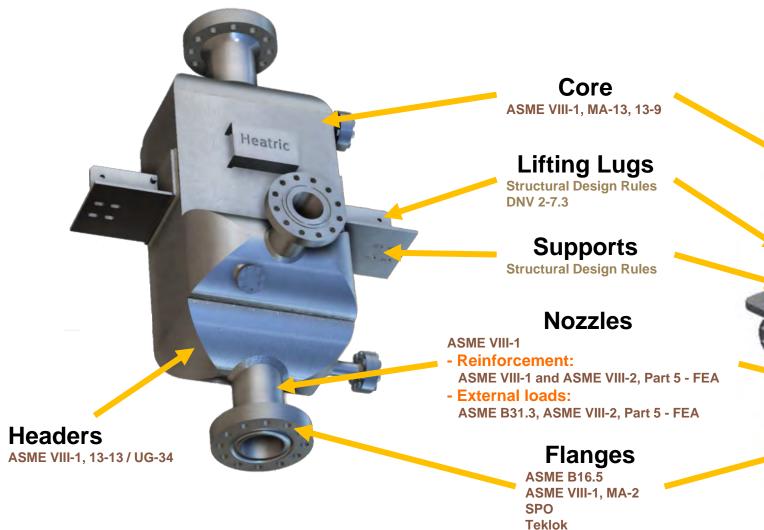
 $Q(t) = (k \times \underline{A} \times (T1 - T2) / t$

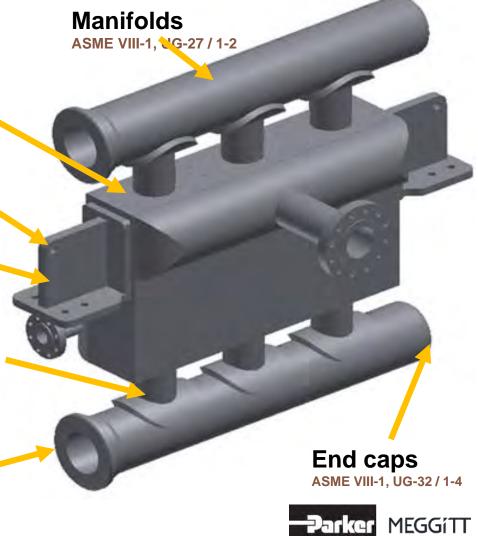
3) HYDRAULIC DESIGN

Pressure drop (ΔP)

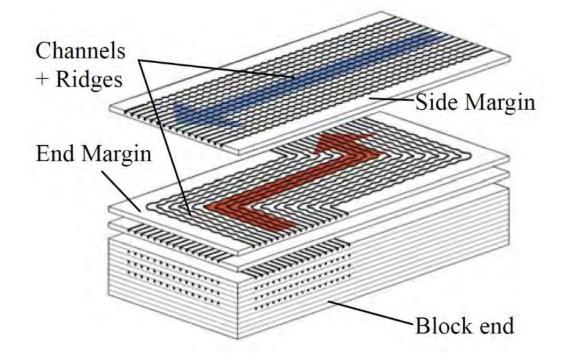
- Distribution through PCHEs:
 - Active Core → min. 50% of the total calculated ΔP_{TOTAL}.
 - Header Nozzles → dynamic head losses enforced, check for maldistribution
- Due to friction:
 - Pressure drop through the core
 - Treated similarly to loses in pipes
 - PCHE experimental studies on fanning friction factor (f) and Re.

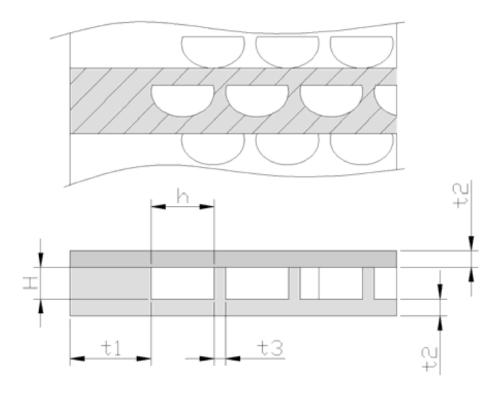
$$\Delta P = \frac{\rho V^2 f L}{2D}$$


- Due to components geometries:
 - Pressure drop through standard core attachments and additional fittings (elbows, manifolds, etc)
 - Apply the resistance coefficient (K) method
 - Expansion and contraction → most commonly used


$$\Delta P = KV_{head}$$

4) MECHANICAL DESIGN


Key Components


Mechanical Design

Heat exchange

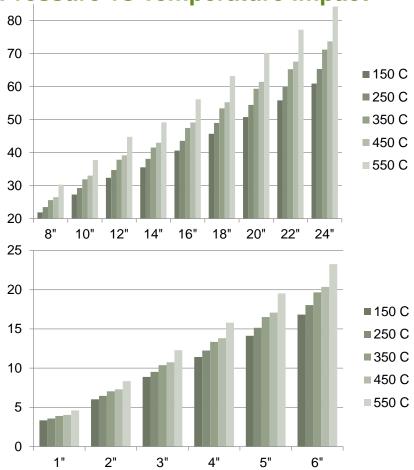
$$Q(t) = (k \times A \times (T1 - T2) / t$$

$$Q = U \times A \times LMTD$$

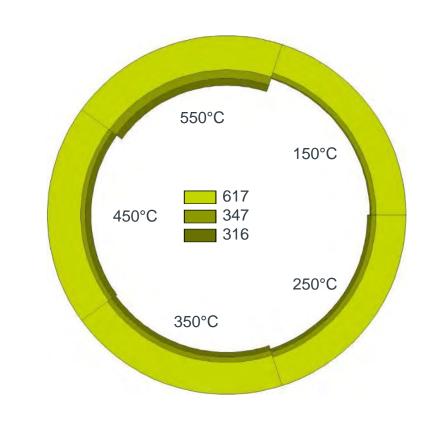
h = channel width

H = channel depth

t1 = edge width


t2 = wall thickness

t3 = ridge width



Mechanical Design

Pressure vs Temperature impact

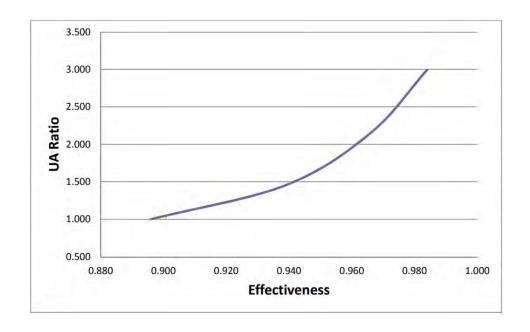
316 Pipe thicknesses vs. design temperature (250 Bar design pressure)

	150°C	250°C	350°C	450°C	550°C
316 vs 347	3%	9%	12%	13%	14%
316 vs 617	17%	22%	24%	23%	31%

316, 347, 617 Pipe thickness reduction vs. temperature (250 Bar pressure)

316 Pipe thickness vs. Std Pipe schedule (250 Bar pressure)

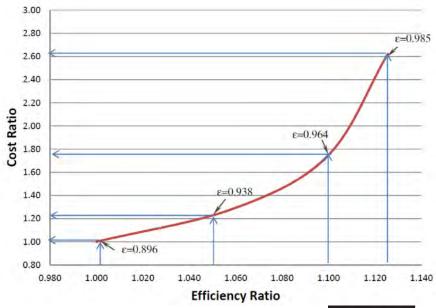
HIGH EFFECTIVENES IMPACT


High Performance to maximise OPEX by increasing RTE (Round Trip Efficiency) / minimise losses

How to facilitate highest level of RTE from an exchanger point of view:

- Ensure highest effectiveness / closer temperature approach feasible (cost vs. performance)

$$Effectiveness = 1 - \frac{\Delta T_{approach}}{T_{hot \ in} - T_{cold \ in}}$$

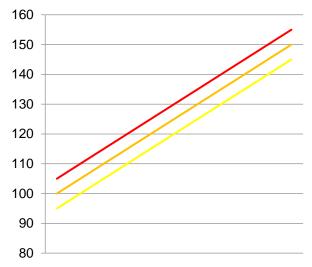

$$^*\Delta T_{approach} = Min[(T_{hot \ in} - T_{cold \ out}), (T_{hot \ out} - T_{cold \ in})]$$

UA where:

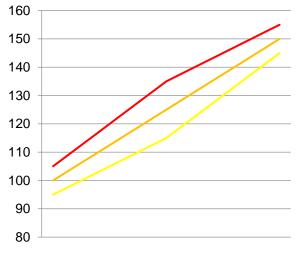
U = Overall heat transfer coefficient

A is heat transfer area

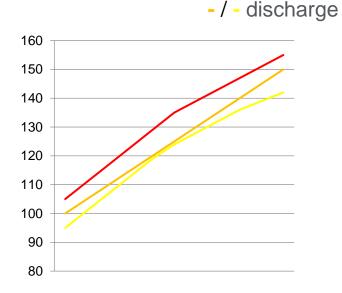
-/-charge


CHARGE / DISCHARGE IMPACT

High Performance to maximise OPEX by increasing RTE (Round Trip Efficiency) / minimise losses


How to facilitate highest level of RTE from an exchanger point of view:

 Check reciprocity of the cycle (excessive losses between charge and discharge for given approach / underperformance due to process conditions)


Surface area requirement may drastically vary between charging and discharging if using the same heat exchanger for both cycles to reduce CAPEX

15° RTE Loss in non-straight heat release with 5° approach

10° RTE Loss in non-straight heat release with 5° approach *

^{*}note the large differences in temperature approaches in the 3rd case between charging and discharging and the implication on heat transfer

