

Managing risk and reliability in hydrogen systems: implications for fueling stations, forklifts, electrolyzers and beyond

Katrina Groth (kgroth@umd.edu)

Professor & Director, Reliability Engineering

Associate Director for Research, Center for Risk and Reliability

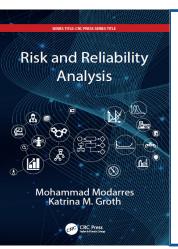
University of Maryland

Research supported by multiple sources. The views expressed herein are those of the authors and do not reflect the official policy or position of any sponsor.

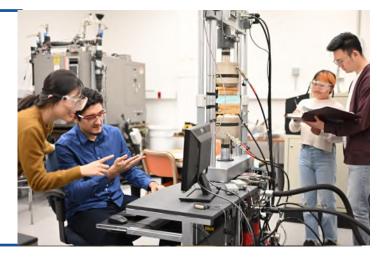
Fast Facts about UMD's Reliability Engineering program & Center for Risk and Reliability

4+12

6


4

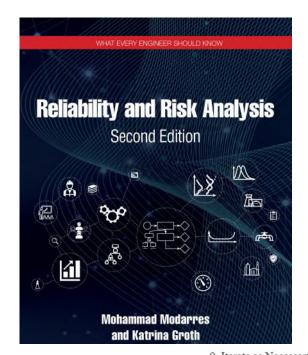
500+

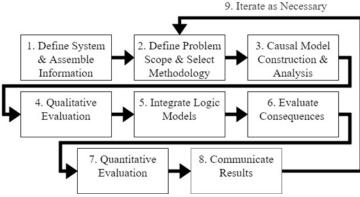

Core, and Affiliate Faculty

Cutting-Edge Research Laboratories Degrees Offered (Ph.D. M.S., M.Eng, Certificate)

Graduates since 1991

- Systems Risk and Reliability Analysis Lab (SyRRA)
- Probabilistic Physics of Failure and Fracture
- Cybersecurity Quantification Lab
- Risk And Decision Analysis Lab (RADA)
- Design Decision Support Lab
- Risk-Informed Solutions in Engineering (RISE)




The #1 Reliability Engineering program in the U.S. (Source: Scopus)

Reliability engineering & quantitative risk assessment (QRA): structured processes to support decision-making

- By building understanding of:
 - What the system is supposed to do (performance)
 - The sources, causes, and likelihood of failures (physicsbased, human, computational, etc.)
 - Priorities & strategies to reduce failure (e.g., design, operation, maintenance)
- Offers the opportunity to identify & proactively change systems & practices throughout the lifecycle

Copyright, Katrina Groth, 2025

Application areas for reliability engineering

Hydrogen is here – enabled by unprecedented national investment

Bipartisan Infrastructure Law

Includes \$9.5B for clean hydrogen:

- **\$8B** regional clean hydrogen hubs
- \$1B electrolysis
- \$0.5B manufacturing and recycling

Inflation Reduction Act

Includes significant tax credits

(e.g., up to \$3/kg for clean H2 production)

U.S. Goals

Reduce 50% U.S. GHG emissions by 2030 Net zero GHG emissions no later than 2050

Clean Hydrogen Production

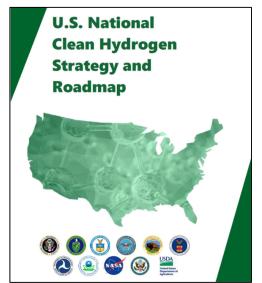
- 10 MMT by 2030
- 20 MMT by 2040
- 50 MMT by 2050

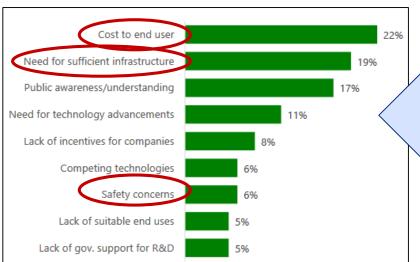
Greenhouse Gas Reduction

10% reduction economy-wide

Economic Impact

100,000 new direct / indirect jobs by 2030


The hydrogen technology is global



Safety & Reliability are a Key Barrier to H2 Deployments

- 2023 U.S. National Hydrogen Strategy identifies:
 - Reliability & risk assessment as key needs for enabling deployments.
 - Education: 100,000 new jobs by 2030

Survey at 2021 DOE Hydrogen Summit shows that safety and reliability dominate the key barriers to public acceptance and market adoption.

Now we have the technology, but we do have some problems...

Fire engulfs new hydrogen bus and fueling station at Golden Empire Transit

Bus & Station Fire, Bakersfield, CA, Aug 2023

Norway fueling station explosion, June 2019 10 stations shut down for investigation

Bus fire, Chungju, Korea, Dec 2024

And it's not just safety: the \$100M problem is **reliability**

Los Angeles Times

CLIMATE & ENVIRONMENT

Refueling a hydrogen car in California is so annoying that drivers are suing Toyota

BY KYLE YOUNKER BUSINESS NOV 19, 2024 0:00 AM

The Norwegian Company Blamed for California's Hydrogen Car Woes

A civil fraud case reveals that the hydrogen fueling stations promoted by Toyota, Shell, and Chevron never worked in the first place.

USA. Nov. 2024

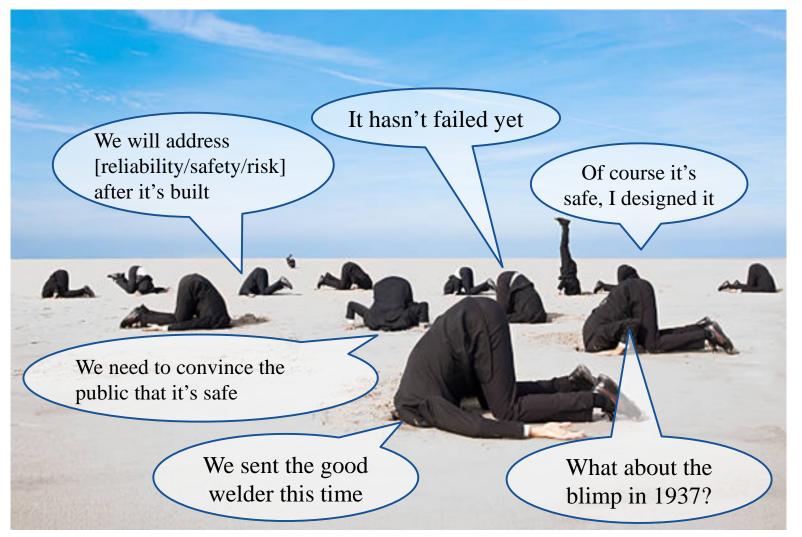
California USA, Aug. 2024

Widespread Breakdowns Cripple Hydrogen Stations in South Korea

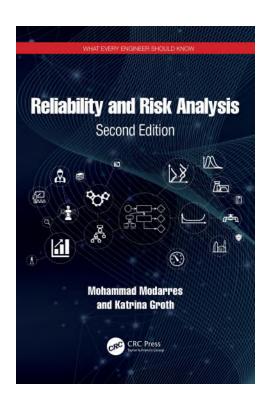
South Korea, September 2024

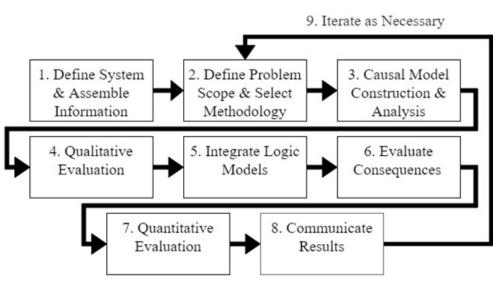
Hyundai recalls all 1,269 of its hydrogen-powered city buses in operation in South Korea due to new safety concerns

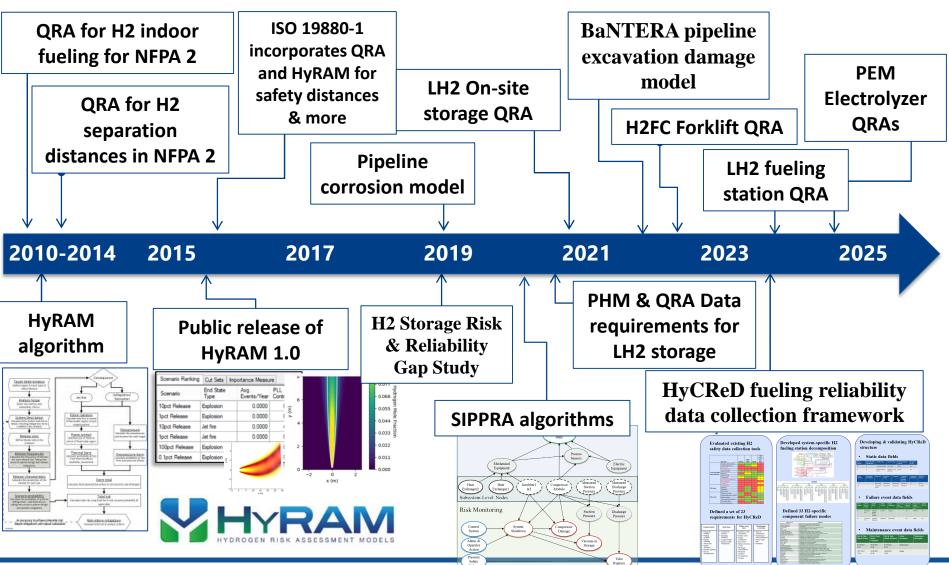
News comes several months after an Elec City bus exploded, seriously injuring a refuelling station worker



Seoul, Korea, May 2025


Bad approaches to dealing with potential failures (risk) & safety questions



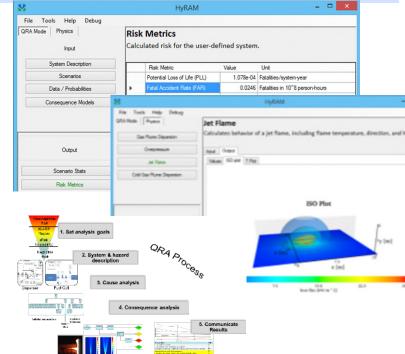

Reliability engineering & risk analysis are part of the solution

Selected projects: 15 years of enabling safer hydrogen equipment & pipeline deployments

Major research activities include:

- Risk assessment (QRA) to establish codes & standards requirements
- Reliability & risk assessment (QRA) to establish risk tolerability & dominant risk contributions & mitigations
- Prognostics & health monitoring to enable reliability prediction and intervention
- Reliability modeling & failure analysis
- Reliability data collection to set priorities

HyRAM+: Making hydrogen safety science accessible through computational tools


First-of-its-kind integration platform for state-of-the-art hydrogen safety models & data - built to put the R&D into the hands of industry safety experts

Core functionality:

- Quantitative risk assessment (QRA) methodology
- Frequency & probability data for hydrogen component failures
- Fast-running models of hydrogen gas and flame behaviors

Key features:

- GUI & Mathematics Middleware
- Documented approach, models, algorithms
- Flexible and expandable framework;
 supported by active R&D

Copyright, Katrina Groth, 2025

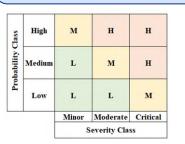
Free at http://hyram.sandia.gov

Impact: QRA enabled safe deployment of hydrogen systems

- QRA enabled the first US & International codes for H2 infrastructure
 - NFPA2 Ch. 7: Established GH2 separation distances (SAND2009-0874)
 - *NFPA2 Ch. 10*: Calculated risk from indoor fueling (SAND2012-10150)
 - NFPA2 Ch. 5: Enabling Performance-based compliance option (SAND2015-4500)
 - *ISO 19880-1 Ch. 4*: Developed consensus approach for defining specific mitigations (e.g., safety distances) using regional criteria & requirements (2016)
 - *ISO 19880-1 Annex A*: Developed safety distance & mitigation examples (2017)

Advances in reliability engineering & safety for hydrogen systems will continue to drive the industry forward

Quantitative Risk Assessment of hydrogen releases in a hydrogen fueling station with LH₂ storage



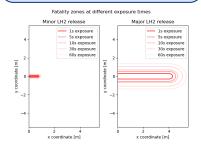
Objective: Perform 1st full QRA on a high-capacity hydrogen fueling station with liquid hydrogen storage (LH₂), high-pressure cryogenic compression, and temperature control through GH₂ and LH₂ mixing.

Qualitative Analysis:

Design realistic high-capacity station & FMEA



H2 Release Models: Develop fault trees for H₂ release scenario



Event Sequence Models:

model undesired scenario progression

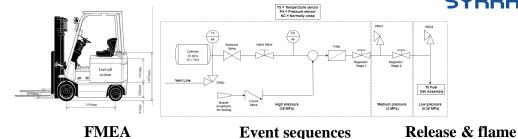
Consequence Analysis: Fatal Accident Rate & Average Individual Risk

Results:

Fully documented QRA to act as a baseline for safety of a liquid storage high-capacity H₂ fueling station

- Most significant risk contributors:
 - Cryogenic pump releases, H₂ sensor failure, Vaporizer ruptures, Filter ruptures, Valve fail. to close
- **FAR**: 1.24×10^{-1} /year
- **AIR**: 3.41×10^{-5} /year
- $(< 10^{-4} \text{ AIR threshold of EIHP2})$

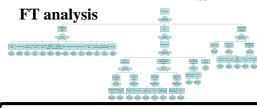
Implications & Impact:


- Provide basis for using QRA to enable reliability, siting, and standards development for liquid storage high-capacity H₂ fueling station
- Inform industry and stakeholders about risks and mitigation options for LH2 station designs and technologies.
- Demonstrated AIR within risk-tolerability zone.

Copyright, Katrina Groth, 2025

QRA of a hydrogen fuel cell forklift

Generic H2 forklift system design


- Over 40,000 H2 fuel cell forklifts currently operating in the U.S.
- QRA study to identify failure causes, release scenarios, probabilities and consequences of a hydrogen fuel cell forklift.
 - Building off QRA method applied for indoor hydrogen dispensers (used in NFPA 2)
- QRA method integrated three major data sources & validated H2 consequence models: HyRAM, CCPS PERD, OREDA
- Shows extended types of impactful outputs possible from using QRA:
- Calculated worker risk (FAR) and compared to U.S Gov't (BLS) data for industrial truck & material handling occupation fatalities.
- *Identified most risk-significant components* using importance measures analysis potential to inform design modifications and/or codes and standards.

Ю	Type	Function	Failure Mode		Cause		Local Effect	System Effect
Tan (V)	k (type III or	On-board storage of gaseous hydrogen at 35 MPa	Rupture (Loss of fuel and fragmentation of container from ovespessure beyond the 1.25x design pressure)		damage; Inadequate design, testing, manufacturing, installation, or maintenance		Explosive release of mechanical energy storedin gas and container; Explosive release of container materials; Potential asphysiation hazard; Collection of combustible minure in closed environment;	Immediate ignation of released fluel resulting in a jet flame hazzed, Delayed ignition of collected vapors, potential epidosion or detonation hazzed
			Leakage (Loss of fuel without substantial pressure drop)	:	Degradation; Seal fishure; External impact damage; Inadequate design, testing, namufacturing, installation, or maintenance		Potential asphyziation hazard; Collection of combustible mixture in closed environment;	Immediate ignition; Delayed ignition of collected vapors, potential explosion or detonation hazard
					Full FMEA available up	×	n request	

simulations Simulations FT analysis

	Frequency (Failures/year)									
ID on Fault Tree	Description	Median (HyRAM)	Mean	Lower 5%	Upper 95%	Reference				
Cyl_L	Cylinder leak	2.30E-07	2.83E-07	6.93E-08	7.87E-07	[29]				
Vent_L	Vent line leak		8.08E-07	3.89E-09	5.48E-06	[29]				
TPRD_L	TPRD leak		2.60E-03	7.40E-04	5.38E-03	[36]				
SV.L	Solenoid valve leak	4.80E-06	1.24E-05	3.30E-07	7.09E-05	[29]				
HVL	Hand valve leak	4.80E-06	1.24E-05	3.30E-07	7.09E-05	[29]				
CHV_L	Check valve leak		8.29E-05	3.19E-07	3.32E-04	[36]				

Total risk (FAR, AIR)

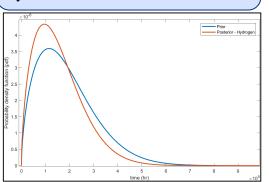
		AIR,	FAR	Expected
		fatalities/forklift-year	fatalities/100 million hours-driver	fatalities/year
Release scenario	Pressure section		Jet Fire	
	Low	0	0	0
Minor release	Medium	0	0	0
	High	0	0	0
	Low	3.27×10^{-6}	0.16	6.53×10^{-2}
Major release	Medium	2.74×10^{-6}	0.14	5.48×10^{-2}
	High	3.49×10^{-5}	2.77	1.11
Total		4.09×10^{-5}	3.07	1.23
			Explosion	
	Low	0	0	0
Minor release	Medium	0	0	0
	High	0	0	0
	Low	1.41×10^{-6}	0.02	2.82×10^{-2}
Major release	Medium	1.36×10^{-6}	0.07	2.72×10^{-2}
	High	2.67×10^{-5}	1.34	5.34×10^{-1}
Total		2.95×10^{-5}	1.42	5.90×10^{-1}

Component Risk Reduction Worth

Fault Tree ID	Description	Scenario(s)	I_{RRW}
F.L	Filter leak	All	1.720
TPRD_P	TPRD prematurely opens	All	1.399
TPRD_L	TPRD leak	All	1.32
CHV_FTC	Check valve failure to close	All	1.025
CHV_L	Check valve leak	All	1.007


Fault Tree ID	Description	Scenario(s)	I_{RRW}
PRD1_FR	PRD1 failure to reseat	All	1.874
PRD1_L	PRD1 leak	All	1.552
PRD1_P	PRD1 prematurely opens	All	1.212
Reg2_L	Regulator 2 leak	All	1.0013
Reg2_FTO	Regulator 2 failure to open	All	1.0009

Copyright, Katrina Groth, 2025


Evaluating the risk trade-offs of pressure relief devices in hydrogen systems

Objective: Define a probabilistic failure model for pressure relief devices (PRD) installed in hydrogen services to assess the risk trade-off they provide.

Define probabilistic failure models for PRDs installs on hydrogen systems

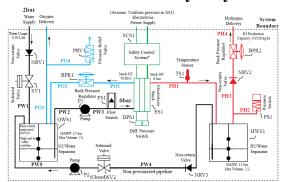
Pressure Relief Valves

Burst or Rupture Disc

Assess the risk provided by PRDs in fueling station and evaluate tradeoffs

- Previous studies have shown that PRDs do not receive the attention they need in regard to risk.
- Hydrogen introduces new challenges, and there are no models to evaluate the risk of PRDs

Implications & Impact:


- First of its kind in analyzing PRD risk profile, allowing the balance between risk control vs risk provided
- Inform industry and stakeholders about risks and mitigation options for PRDs
- Inform Code & Standards Committees on when to use PRDs as risk control mechanism.

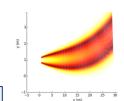
A. Jimenez and K. M. Groth, "Hazards Associated with Pressure Relief Devices in Hydrogen Systems," *Journal of Loss Prevention in the Process Industries*, vol. 91, p. 105380, Oct. 2024.

Early insights from QRA on H2 electrolyzers.

Objective: Conduct QRA for an electrolyzer system to inform hydrogen technology development and QRA development to support hydrogen risk mitigation measures. In addition, the project seeks to identify input data gaps for hydrogen system *ORA* and any additional R&D needs in this topical area.

Lab-scale PEM electrolysis system

Event sequences

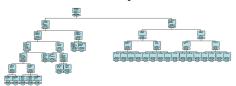

- For an H₂ release, jet fires are twice as likely to occur vs. explosions.
- The most risk-significant events for H₂ releases are:
 - External and internal leakage of hydrogen in hydrogen-water separator
 - Flow restrictions of the non-return and solenoid valves connecting the two gas-water separators
 - External leakage of hydrogen from non-return valve, backpressure regulator, and piping in H₂ production

FMEA

D .	Conposes	Enthern Mode	Court of Failure Made	Libration of Government () w	Consequences of Fallow Mode	Current Controls and Enliquesis	Soudous	BACK-LUT
902	Non-origin Valve	Eatl-decod	Seadequate design, expection, besting manufacturing mentilation and material		damage in the newdomer case move that is obvious. After mechanical damage of the numbers, higher previouses in the 3D side may patentially had 3D or migrate to the OC side hading to mining herevers 3D and OC in OPSS, thought counting a financials into Institute most of the th SDD, hadden to an extension.	Hit tips the system at high generals		Nes
			Ethnodepa7	CHECK		proper differentials		Nigh.
			Degradation	California		Norhanied integrity of 1811 Ouder control injurelation	Caterophir	No.
		Partially closed	bridge namelicitating incollection and nationalcox		Position recognitions of trial SST even a long provided than This will depend on the relations in the Northeant of Energy with the medium can some data to instruct the northeant of Energy of the medium. Applies provide in the ST risk was provided and ST or injury to the CO and to college or mining the result of Energy of ST of ST of the ST or injury to the CO and to college or mining the result of Energy of ST of ST of the ST or injury and the ST of ST			Nigh
			Drivered Separt	Talkiniy		OFFE bigs the system at high resource differentials	Catamophin	Bigs
			Deputition	California		Michaeld integrity of SRS1	Controytic	NW.
		LeduSapture	bradequate design, suspection, bending manufacturing mendlation and maintenance.		Examples of each of water and SC on Judy of SC production in SSE; that could be of to the implement	Notherical integrity management	Catachrophic	Nigh.
			Degradation (correction and/E) embetdement(California		Marwine was desilicated to proved fellow Egotions	Catararaghir	No.
						P251 - codd toj-the system if there is a significal personan difference in ESI.		

- Water supply and separation is the highest contributor to # of high-risk scenarios leading to an H, release.
- Electrolysis and O₂ production contribute to nearly 60% of # of high-risk scenarios leading to H_2 - O_2 mixing.

Release & flame simulations



 $Pr_{thermal\ harm} = 2.56 \times 10^{-22}$ $Pr_{overpressure\ harm} = 0.95$

Scenario Analysis & Total risk (FAR, AIR)

	AIR (fatalities/ electrolyzer-year- operator)	FAR (fatalities/ 100E+6 hours- operator)	Expected fatalities/year
Major H2 release leading to a jet fire	1.14×10^{-26}	2.82×10^{-22}	6.25×10^{-25}
Major H2 release leading to an explosion	2.03×10^{-5}	5.09×10^{-1}	1.12×10^{-3}
Total	2.03×10^{-5}	5.09×10^{-1}	1.12×10^{-3}

FT analysis

• In terms of frequency, H₂-O₂ mixing is the most **frequently-occurring top event** in electrolyzer operations (between a H2 release, O2 release, and H_2 - O_2 mixing)

Importance measures analysis

Fault Tree ID	Description	I_{RRW}
	External leak of hydrogen from hydrogen-water separator	3.62
	Internal leak of hydrogen from hydrogen-water separator	1.36
SV2_Plug	Solenoid valve 2 plugged	1.00
SV2_FTO	Solenoid valve 2 fails to open	1.00
SV2_FC	Solenoid valve 2 fails closed	1.00

Early ORA results for electrolyzers show the importance of:

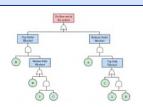
- Mechanical integrity and leak detection for electrolyzer stack, gas-water separators and valves
- Preventing freezing, plugging (flow blockage) in valves in H2-Water separation
- Increased interior volume and/or venting of H2 from the enclosure of the system

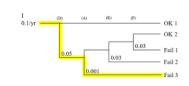
Quantitative Risk Assessment of the Safety and Reliability of Proton Exchange Membrane Electrolysis for Hydrogen Production at Nuclear Power Plants

Objective:

Establish technical foundations and processes for assessing the safety of hydrogen production in nuclear power plant (NPP) applications by conducting and documenting a comprehensive QRA on a proton exchange membrane (PEM) electrolysis facility coupled to a NPP.

Task 1:


Conduct a **failure modes and effects analysis** on the PEM electrolyzer


Task 2:

Develop **fault trees** by functional group for risk critical scenarios

Create **event sequence diagrams** to model
undesired consequences

Task 4:

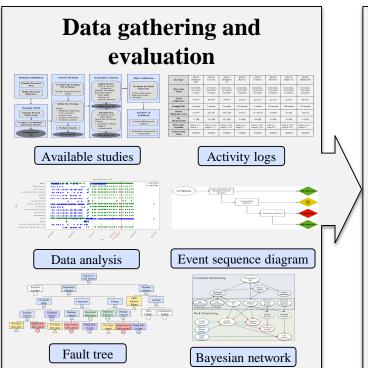
Simulate and incorporate **consequence simulations** into ESDs

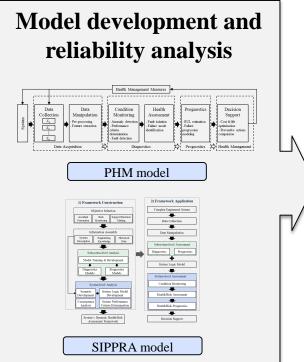
Expected Results:

- Fully documented QRA for the safety and reliability of the PEM electrolyzer coupled to the NPP
- **Identification of the most risk significant components** from the PEM electrolyzer design
- Risk informed PEM electrolyzer design and layout recommendations

Impact:

- Ensure that siting the nuclear and hydrogen facilities together does not impose undue risk through making early stage design and layout recommendations
- Enable a **transition to decarbonized nuclear hydrogen production**, at scale,
 to support transportation, industrial
 manufacturing, and energy storage





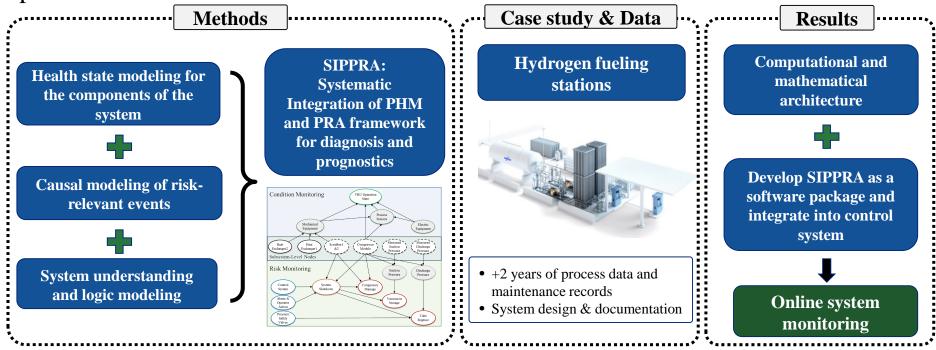
Cryogenic pump reliability project: Objective & Motivation

• Objective: Develop mechanistic & computational understanding of the failure modes, behaviors, and mechanisms for cryogenic pumps and develop reliability models and methods to predict when these events will occur.

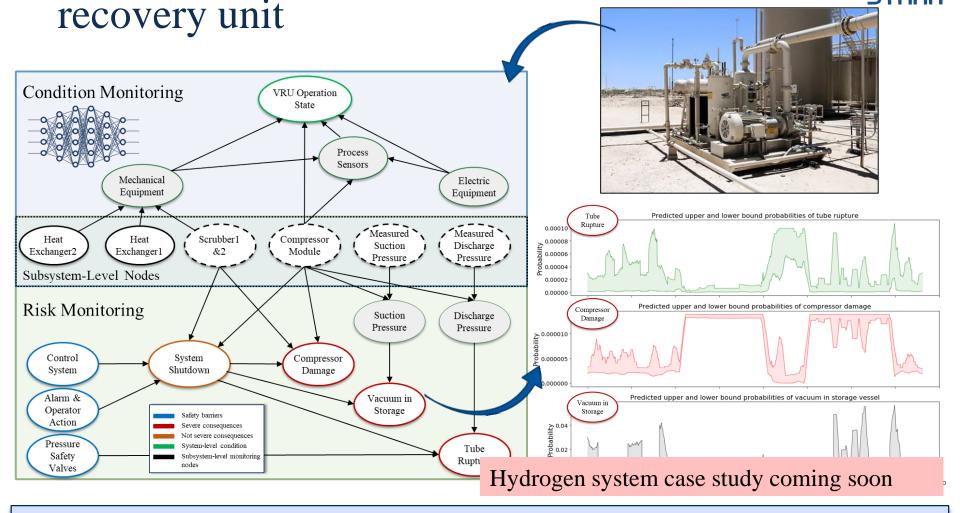
Cavitation data-driven machine learning model

Developed data-driven model for predicting cavitation from 3+ years of data with a handful of cavitation events

- Model is uncovering cavitation events that were undetected
- Cavitation events can be detected minutes earlier than previous algorithm
- This analysis uncovered a timing mismatch in maintenance records -- customer is correcting the record reporting.


Predicted cavitation probability

A methodology for Risk and Reliability Prognostics applied to Hydrogen Fueling Stations


Research objective: Create a framework for system-level health state and risk prognostics on energy systems by fusing system understanding, causal logic and process data

This methodology will monitor system risk and estimate remaining useful life (RUL) of critical components, enabling more reliable operation and efficient maintenance planning

SIPPRA Example: day-to-day operations – risk monitoring of an oil & gas vapor

Our new methods can dynamically monitor the risk of complex engineering systems

Copyright, Katrina Groth, 2025

Research defining a Hydrogen Component Reliability Database (HyCReD)

Evaluated existing H2 safety data collection tools

	H2Tools	NREL CDPs	HIAD	CHS Failure Rate Data	
	Initiating event (description)	✓	✓	✓	×
	Location within system	×	✓	0	×
	Failure mode	×	×	×	×
	Failure mechanism	×	×	×	×
Event and failure	Failure root cause	✓	1	1	×
characterization	Release size	×	0	1	1
characterization	Incident severity	✓	✓	1	1
	Consequences	0	1	1	0
	System response (Mitigation)	×	×	×	0
	H2 accumulation	×	×	×	×
	H2 detection	×	×	×	0
	Component life	×	×	×	×
Life/usage	Operations	×	1	×	0
Life/usage	Maintenance	×	1	×	0
	Site inventory	×	1	×	0
	Public access to data	✓	×	V	?
	Scope includes any H2 incident	✓	×	V	1
Data scope	Regular reporting	×	✓	×	✓
	Anonymous data presentation	✓	✓	✓	✓
	Data quality checks	×	✓	×	?
	Process documentation	×	×	0	×

Defined requirements for HvCReD

Quality assurance

Regular updating Process documentation

Failure event

Component location Operating

Component life Number of like components

Root cause Release location & size Hydrogen

Detection

Consequence

Narrative event

description

Failure

Failure mode

mechanism

Maintenance event data

Maintenance action performed Active repair Manhours

Copyright, Katrina Groth, 2025

Developed system-specific H2 fueling station decomposition

Defined hydrogen-specific component failure modes

Abnormal output-high	Above normal output indicates potential failure(s)
Abnormal output-low	Below normal output indicates potential failure(s)
Bent/warped/damaged	Visible damage
Contamination	Component allows foreign material to contaminate product
Drift	Erroneous reading due to lack of calibration
Erratic output	Inconsistent output
External leak hydrogen	Hydrogen leak from within system to environment
External leak utility medium	Utility medium leak from the system to the environment
External rupture hydrogen	Complete loss of containment, hydrogen exhausts to the environment
External rupture utility medium	Complete loss of utility medium to the environment
Fail closed	Component stops working in the closed position
Fail open	Component stops working in the open position
Fail to close	Component does not close on demand
Fail to disconnect	Components meant to disconnect does not do so on demand
Fail to evaporate	Hydrogen remains in liquid form after passing through evaporator
Fail to operate	Component does not function on demand
Fail to stop	Component does not stop on demand
Freezing	Component is frozen and becomes inoperable/requires maintenance
Insufficient heat transfer	Target parameters for temperature are not met in a heat exchanger
Internal leak hydrogen	Hydrogen leak within system boundary (e.g. across a closed valve)
Internal leak utility medium	Utility medium leak within system boundary (e.g. across a closed valve)
Internal rupture hydrogen	Complete loss of containment, hydrogen stays within the system boundary
Internal rupture utility medium	Complete loss of containment, utility medium stays within the system boundary
Open circuit	Electrical circuit that is not complete
Overheating	Component is exposed to temperatures above design specifications
Overspeed	Component operates above desired/specified speed
Plugging	Buildup of material restricting flow
Restrict flow	Component is restricting flow when not intended to do so
Short circuit	Diversion of current
Spurious operation	Activation without specified demand (components normally idle)
Spurious stop	Stop without specified demand (components normally active)
Stuck connection	Component is stuck at point of contact (nozzle)
Underspeed	Component operates below desired/specified speed

Developed & validated HyCReD structure

Static data fields

Event Number	Station/Facility Identification	Facility Type			H2 phases on site
25	A	Commercial, public	Heavy-duty	700 bar	Gas
26	В	Research, limited- access	Both heavy- and light-duty	350 bar	Gas
	n				

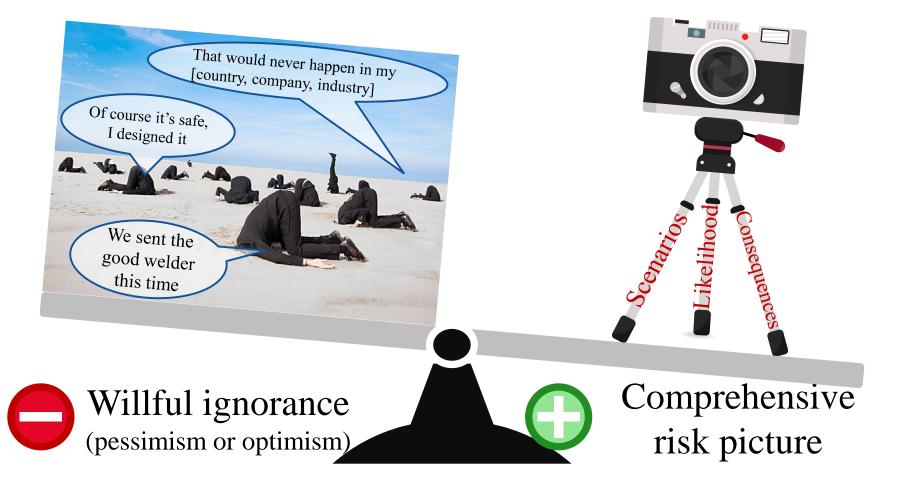
Event Number	Equipment Description	Subsystem	Functional Group	Component	Component Nominal Working Pressure	Component Population	P&ID Part Number
25		Bulk storage	Containment	Type III tank	250-300 bar	18	TK-103
26		Compression process	Compression	Compressor	400-680 bar	2	CO-E-49A

Failure event data fields

Event Number	Time & Date of Failure	Failure Mode	Failure Severity	Failure Mechanism	Failure Root Cause Description	Hydrogen Release (Yes/No)	Release Size (Small/ Medium/La rge)	Ignition (Yes/No)
25	07/17/2021 08:32	External leakage- Process medium	Critical	Leakage		Yes	Medium	No
26	10/17/2021 15:33	Parameter deviation	Degraded	Overheating		No	Small	No

Maintenance event data fields

Date & Time Repair Started	Date & Time Repair Completed	Date & Time Station Restarted	Action Performed	Maintenance Description
07/18/2021 09:55	07/28/2021 10:00	07/29/2021 09:30	Replacement	
10/17/2021 17:30	10/20/2021 13:30	10/20/2021 15:30	Repair	



"Failures are the accidental experiments that contribute to the engineer's experience.... Finding the true causes of failure often takes as much of a leap of the analytical imagination as original design concepts."

-- Henry Petroski, *To Engineer Is Human: The Role of Failure in Successful Design*, 1992.

Principles: Why QRA?

Key takeaways & Closing thoughts

- Systems must be engineered for safety & reliability
- QRA & Process Safety enable hydrogen system safety
- Need to scale-up QRA analysis as the industry matures to enable mitigation of early design/deployment issues
- Opportunities to partner what can we do together to advance the state of knowledge?

Advances in risk analysis & reliability engineering for hydrogen systems will continue to drive the industry forward

Acknowledgements – SyRRA Lab Members & Sponsors

Research supported by multiple sources. The views expressed herein are those of the authors and do not reflect the official policy or position of any sponsor.

Thank you!

Prof. Katrina Groth

kgroth@umd.edu

University of Maryland Reliability Engineering Center for Risk and Reliability

SyRRA Lab: http://syrra.umd.edu
Center for Risk and Reliability: http://crr.umd.edu

Active research is supported by multiple sponsors.

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the sponsors.

Center for Risk and Reliability

What is the biggest challenge facing the deployment of hydrogen technologies?

```
validation feasibility
off-takeinvestment enough
perception expensive actors costs technology
project public awareness
cost-share eliable apital hydrogen Safety COST45v money
infrastructure funding confidencerisk
economic acceptance advertisement invest uncertainty
public concern provide recognition
```

